Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 March 2018 Photo Varsity Sports
Medals galore at second Varsity meeting Peter Makgato
Peter Makgato won the long jump title at the second Varsity athletics meeting in Pretoria with a winning jump of 7.56m.

The University of the Free State (UFS) had a successful second Varsity athletics meeting on Friday 23 March 2018 at the Tuks Athletics Stadium in Pretoria, dominating the long jump and middle distances. 

The 25 athletes achieved six gold and eight bronze medals. Although it’s just one more than what they earned at the first Varsity meeting at the beginning of the month, two more received gold. On 2 March 2018 the Free State students totalled four gold, six silver and three bronze medals. 

Although Yolandi Stander bagged a silver in the discus, it didn’t contribute to the Kovsies’ total. Stander competed for Tuks last year and the competition rules do not permit her to participate for another university in the following year.
 
Victories in middle distances and long jump
As was the case in the first meeting, the athletes running in the red colours of the Kovsies outsprinted the rest in the middle distances with three first places. Both Ruan Jonck (1:50.56) and Ts’epang Sello (2:10.42) defended their titles in the 800m for men and women respectively.

In the 1500m for women, Tyler Beling clocked a winning time of 04:33.48 with Lara Orrock following in third place (04:46.37). Both are just 18 years old. 

Both long-jump titles were decisive victories. Peter Makgato’s winning jump (7.56m) was 0.17m more than his closest competitor, and Maryke Brits (5.81m) won by 0.14m.

Three bronze medals were added in the field events; Nadia Meiring (47.10m) in the hammer throw) and Sefako Mokhosoa (15.29m, men) and Molebohang Pherane (11.67m, women) both in the triple jump. 

On the track Ané Erasmus (400m hurdles, 1:04.04), Hendrik Maartens (200m, 21.01) and Sokwakana Mogwasi (100m, 11.99) all ended in the third spot. 

The men’s varsity mixed medley relay won their race once again, and the men’s 4x100m relay finished third. 
The Kovsies ended fourth overall after the two meetings.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept