Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 May 2018 Photo Charl Devenish
South Campus UAP celebrates 27 years of access to education
Mr Francois Marais, Prof Kalie Strydom, Prof Daniella Coetzee (South Campus Principal), Prof Francis Petersen, Dr Nthabeleng Rammile (Vice-Chairperson of the UFS Council), and Dr Khotso Mokhele (Chancellor of the UFS).

More than 27 years ago, international funding from the Human Sciences Research Council and Anglo American was put to an unusual use for that time. Prof Kalie Strydom’s research unit at the University of the Free State (UFS) was tasked with reviewing how institutional missions would change in the new South Africa. Prof Strydom worked closely with surrounding communities in Bloemfontein to develop a bridging course which would help students who showed potential to access tertiary education, although they did not meet the requirements. His vision brought to birth the University Access Programme (UAP), as it is known today, which is hosted on the UFS South Campus, and is still providing unique access to higher-education institutions in South Africa.

People with a passion for human development
March 2018 saw the 27th anniversary of this remarkable initiative, which has given a second chance to over 18 000 students. Special guests at the event included Prof Strydom, Mr Francois Marais, and representatives from the Department of Higher Education and Training and Investec’s corporate social investment office.

Dr Sonja Loots, researcher in the UFS Centre for Teaching and Learning (CTL), singled out two key individuals in the formation of the UAP: Prof Kalie Strydom, who initiated the programme, and Mr Marais, who has been Director of the UAP since its inception. Dr Loots highlighted one of the driving forces behind Prof Strydom’s perseverance, vision, and determination with the UAP by quoting from an interview with him for an upcoming book on student access and success. He said, “It was a decision based on principle … to be part of the solution to a better country.”

Access and success still an issue today
In his presentation on the “Importance of Access”, Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, pointed out the vital role of access in South Africa, especially the value it offers for the betterment of the country’s people. However, he said that student success is also an issue, and institutions need to be accountable for it. Quoting Prof John Martin of the University of Cape Town’s Faculty of Engineering, “We must be flexible on access, but robust on success.” Only by “closing the loop” in this way, can the UFS and other higher-education institutions ensure a valuable contribution to the economy of the country.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept