Latest News Archive

Please select Category, Year, and then Month to display items
Years
2017 2018 2019 2020
Previous Archive
02 May 2018 Photo Charl Devenish
South Campus UAP celebrates 27 years of access to education
Mr Francois Marais, Prof Kalie Strydom, Prof Daniella Coetzee (South Campus Principal), Prof Francis Petersen, Dr Nthabeleng Rammile (Vice-Chairperson of the UFS Council), and Dr Khotso Mokhele (Chancellor of the UFS).

More than 27 years ago, international funding from the Human Sciences Research Council and Anglo American was put to an unusual use for that time. Prof Kalie Strydom’s research unit at the University of the Free State (UFS) was tasked with reviewing how institutional missions would change in the new South Africa. Prof Strydom worked closely with surrounding communities in Bloemfontein to develop a bridging course which would help students who showed potential to access tertiary education, although they did not meet the requirements. His vision brought to birth the University Access Programme (UAP), as it is known today, which is hosted on the UFS South Campus, and is still providing unique access to higher-education institutions in South Africa.

People with a passion for human development
March 2018 saw the 27th anniversary of this remarkable initiative, which has given a second chance to over 18 000 students. Special guests at the event included Prof Strydom, Mr Francois Marais, and representatives from the Department of Higher Education and Training and Investec’s corporate social investment office.

Dr Sonja Loots, researcher in the UFS Centre for Teaching and Learning (CTL), singled out two key individuals in the formation of the UAP: Prof Kalie Strydom, who initiated the programme, and Mr Marais, who has been Director of the UAP since its inception. Dr Loots highlighted one of the driving forces behind Prof Strydom’s perseverance, vision, and determination with the UAP by quoting from an interview with him for an upcoming book on student access and success. He said, “It was a decision based on principle … to be part of the solution to a better country.”

Access and success still an issue today
In his presentation on the “Importance of Access”, Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, pointed out the vital role of access in South Africa, especially the value it offers for the betterment of the country’s people. However, he said that student success is also an issue, and institutions need to be accountable for it. Quoting Prof John Martin of the University of Cape Town’s Faculty of Engineering, “We must be flexible on access, but robust on success.” Only by “closing the loop” in this way, can the UFS and other higher-education institutions ensure a valuable contribution to the economy of the country.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept