Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 October 2018 | Story UFS | Photo Varsity Sports
First ever netball final in Bloemfontein
The Kovsies will be aiming to lift the Varsity Netball trophy in front of their home supporters on Monday when they face Tuks in the final in the Callie Human Centre.

The netball team of the University of the Free State, once again after five years, earned themselves the right to stage a final in the Varsity Netball competition. The two-time champion, the Dream Team, qualified for the final after topping the log and then wiping the floor with the Maties on Monday (1 October 2018) in the semi-final. The score was 56-45. 

They will come up against Tuks in the Callie Human Centre on the UFS Bloemfontein Campus for the final tonight. The match will get underway at 18:45.

The team won the very first two years of the competition in 2013 and 2014. On both occasions, they had to play away from home – in 2013 against the Pukke in Potchefstroom and in 2014 against Tuks in Pretoria. 

It will be the fourth meeting between the Kovsies and Tuks within three months. The Free State students won the group fixture in August by 68-43, but Tuks had to do without a number of their star players. At the University Sport South Africa tournament in Bloemfontein during July, Tuks triumphed twice, winning the final by 48-30.

Apart from the winners’ medals, an award will be handed to the tournament’s top player. Centre Khanyisa Chawane is one of three finalists. The winner gets chosen through public votes.

Dream Team players have won the prize four of the five times. Ané Botha was crowned in 2013, Karla Pretorius in 2014 and 2015, and last year it was the turn of current Kovsie player, Khomotso Mamburu.

To vote for Chawane, click here hover your mouse over the like button and choose the heart emoticon. Voting is closing on 5 October and the winner will be announced after the final.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept