Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
Andrew Lane
Mining the fourth industrial revolution way is the future says industry expert, Andrew Lane.

Innovation is imperative for the future of mining in South Africa. Industry expert, Andrew Lane proposes that leveraging on new information, mining technologies and energy knowhow, which are the hallmarks of the fourth industrial revolution, should set the scene for success.

Lane who is Africa Energy and Resource Leader at Deloitte, engaged students at a recent guest lecture hosted by the University of the Free State’s Business School on the Bloemfontein Campus. “The future is intelligent mining. It’s not just about technology; it’s about changing the way you do business,” he said.

Transforming traditional to trailblazing
“What gives you sustainable competitive advantage is the rate at which you innovate,” said Lane. Design paradigm shifts in the South African mining industry may have resulted in about 100 000 job losses during the past four years. However, mining companies stand to achieve significant gains through applying innovation.

Despite most of South Africa’s mines nearing the end of their lives, mining remains a large employer and investor attractor which ensures that the country holds a competitive advantage in the global economy. Lane is adamant that, “even though we have declined from 20% to 5% in terms of GDP contributions, mining remains a large contributor to export earnings”.

Reaching resource-rich regions
While some physical resources are inaccessible using current technology, “new mineral-processing technologies help tap into previously uneconomical mineral deposits”, according to Lane. In addition to the environment, 3D visualisation cameras can track employees and equipment in the bowels of the earth.

More mining, less loss
Integrating mining, energy, and information technology will ensure that companies reduce people, capital and energy intensity, while increasing mining intensity. The impossible can be achieved if technology is used well for developmental outcomes, employment, and improving standards of living.



News Archive

Afromontane Research Unit makes climate change inroads
2017-10-28



Description: Prof Mukwada Tags: Prof Mukwada

Prof Geofrey Mukwada

The Afromontane Research Unit (ARU) has recently made inroads in climate-change research. This has been achieved through work published by Professor Geofrey Mukwada and Professor Desmond Manatsa, whose research could make it possible to predict El Nino Southern Oscillation (ENSO) several months before its occurrence. 

Professor Manatsa is an ARU postdoctoral fellow currently collaborating with Professor Mukwada on an ongoing climate-change research project. The two experts noted that ENSO is one of the most important climate phenomena on earth, due to its ability to change the global atmospheric circulation, which in turn, influences temperature and precipitation across the world.

Climate change scientific breakthrough

“This is a tremendous breakthrough, because humanity as a whole has been looking for answers regarding the origins of climate-related hazards which are worsening, yet becoming more frequent and difficult to predict. In some cases, floods and droughts occur in the same season, and within the same geographical area. These extreme climate events are becoming more frequent, often leading to loss of life and threatening national economies and livelihoods,” said Professor Mukwada, coordinator of the ARU sub-theme on Living and Doing Business In Afromontane Environments.

During an interview with the Southern Times, Professor Manatsa revealed that the El Nino Southern Oscillation (ENSO) is initiated and sustained in the tropical Pacific, a fact that has eluded climate scientists for years. “It was an unresolved puzzle which limited the successful prediction of ENSO events with reasonable lead time. Climate scientists were only able to know with some degree of certainty that the event would occur once it had started, just a few months before its impacts were felt,” Professor Manatsa said.

Prof Manatsa is upbeat that a lot of headway has now been made towards unravelling the mystery of ENSO’s origin. “The necessity of the inclusion of the solar energy changes due to ozone alterations in the upper atmosphere should significantly impact on the realistic version of ENSO in climate models. This in turn should not only provide more accurate ENSO forecasts for the region, but a longer lead time for users to prepare for the event,” he said.

ENSO is a climate phenomenon based in the tropical Pacific Ocean. Its events bring good rains and even floods over most parts of the world in some years and droughts in others, depending on whether the phenomenon is in a warm or cold phase. The warm phase is referred to as El Nino, when the waters over the tropical east Pacific are heated up, but when cooled, it is termed La Nina. La Nina was responsible for the favourable rains over much of Southern Africa, including Zimbabwe, during the 2016/17 rainfall season. The El Nino occurrence a year before had devastating drought effects that was characterised by scorching heat and widespread water shortages. This work was published in a high-profile journal, Nature Scientific Reports

ARU is a flagship inter- and trans-disciplinary research programme focusing on the under-researched area of montane communities. It was launched in June 2015 and is based on the Qwaqwa Campus. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept