Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
Andrew Lane
Mining the fourth industrial revolution way is the future says industry expert, Andrew Lane.

Innovation is imperative for the future of mining in South Africa. Industry expert, Andrew Lane proposes that leveraging on new information, mining technologies and energy knowhow, which are the hallmarks of the fourth industrial revolution, should set the scene for success.

Lane who is Africa Energy and Resource Leader at Deloitte, engaged students at a recent guest lecture hosted by the University of the Free State’s Business School on the Bloemfontein Campus. “The future is intelligent mining. It’s not just about technology; it’s about changing the way you do business,” he said.

Transforming traditional to trailblazing
“What gives you sustainable competitive advantage is the rate at which you innovate,” said Lane. Design paradigm shifts in the South African mining industry may have resulted in about 100 000 job losses during the past four years. However, mining companies stand to achieve significant gains through applying innovation.

Despite most of South Africa’s mines nearing the end of their lives, mining remains a large employer and investor attractor which ensures that the country holds a competitive advantage in the global economy. Lane is adamant that, “even though we have declined from 20% to 5% in terms of GDP contributions, mining remains a large contributor to export earnings”.

Reaching resource-rich regions
While some physical resources are inaccessible using current technology, “new mineral-processing technologies help tap into previously uneconomical mineral deposits”, according to Lane. In addition to the environment, 3D visualisation cameras can track employees and equipment in the bowels of the earth.

More mining, less loss
Integrating mining, energy, and information technology will ensure that companies reduce people, capital and energy intensity, while increasing mining intensity. The impossible can be achieved if technology is used well for developmental outcomes, employment, and improving standards of living.



News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept