Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 April 2019 | Story Leonie Bolleurs
Science ambassadors
Friends Tekano Mbonani and Chaka Mofokeng are pursuing graduate degrees in respectively Physics at the University of the Free State (UFS) and Astronomy at the University of the Western Cape. The two got together and decided to reach out to the high school, Leseding Technical Secondary School, where they came from.

It was a full house as more than 120 learners packed the hall at the Leseding Technical Secondary School in the Free State, where two young Astronomy researchers had come home to tell their younger peers about their studies and career prospects across South Africa.

Chaka Mofokeng and Tekano Mbonani are both former learners at the high school. Currently pursuing graduate degrees – for Mbonani in Physics at the University of the Free State (UFS), and for Mofokeng in Astronomy at the University of the Western Cape – the two friends got together and decided to reach out to the high school where they came from.

The event took place in January before schoolwork, tests, and exam preparations are occupying learners’ minds, inviting them to think about the big picture – the future, and how to be part of it. This is timely, because in July last year, the MeerKAT radio telescope was inaugurated in the Karoo. The MeerKAT is the first step to the international SKA telescope project, but it is already one of the best radio telescopes in the world and has placed South Africa firmly on the world map of radio astronomy and engineering.

Building a bridge
“This project enables us to build a bridge between secondary and tertiary institutions. Currently focused on senior secondary students, we aim to promote science through outreach events and activities. Using science and technology-based activities and events, such as stargazing at an observatory or exploring the universe in a planetarium, we want to attract these future secondary graduates. We also provide mentorship, hoping to help them improve their academic performance in matric,” said Mbonani.

For a whole morning, they spoke about their journeys, about science, about the skills that scientists acquire during their studies and all the opportunities such studies open up in an era where the 4th Industrial Revolution is predicted to reduce the number of jobs in many traditional professions. They addressed their peers in both English and Sesotho.

Astronomy in South Africa contributes to critical-skills development. Investing in the MeerKAT, for example, meant that over a thousand bursaries were made available through the SKA South Africa Human Capacity Development programme. Young scientists like Mofokeng and Mbonani have the opportunity to be part of MeerKAT science projects through their studies, using machine learning and other skills that are high in demand in today’s world. This was one of the messages they brought home.

Gaining new skills

“As an Astronomy research student, I have gained skills such as data analysis, mathematical modelling, communication and writing, programming, and teamwork, among others. These are requirements for most companies and institutions. With the unfolding of the 4th Industrial Revolution, such skills sets make young and aspiring scientists the perfect candidates for making the most of future opportunities,” reflected Mofokeng.

Most of the learners said they have never attended a science-outreach event. They were inspired by the young scientists’ stories and nearly half of them said they could see themselves pursuing a career in science. The learners also expressed a strong interest in more events of this kind, as well as mentorship during Grades 11 and 12 from peers at university. They asked about the salaries earned by astronomers, how long the studies take, and where astronomers are working in South Africa.

This initiative, started by two bright young scientists, hopefully marks the beginning of many more events of this kind. Mofokeng and Mbonani are already planning what to do on their next trip home.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept