Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2019 | Story Valentino Ndaba | Photo Pexels
Prof Melanie Walker
Fostering human capabilities in universities may potentially transform education, says Prof Melanie Walker.

Education is at the centre of human life, and has the potential to be a crucial support for democratic life. Prof Melanie Walker’s recent research paper strikes a balance in dealing with people, education and the implications for democracy through the lens of human capabilities theory and practice and her own research.

People and papers

In her capacity as the SARChI Chair in the Higher Education and Human Development Research Programme at the University of the Free State (UFS), Prof Walker recently published a paper titled: Defending the Need for a Foundational Epistemic Capability in Education. It appeared in the special issue of the Journal of Human Development and Capabilities in honour of renowned Nobel Laureate Amartya Sen’s 85th birthday.

Nurturing epistemic justice

Within the context of existing literature such as that of Sen’s concern with the value of education on the one hand, and public reasoning on the other, Prof Walker argues for a foundational epistemic capability to shape the formal education landscape – as well as quality in education – by fostering inclusive public reasoning (including critical thinking) in all students. It would contribute to what Sen calls the ‘protective power of democracy’ and shared democratic rights, which, he argues, are strongly missed when most needed.

“Sen’s approach asks us to build democratic practices in our university and in our society in ways which create capabilities for everyone. If our students learn public reasoning in all sorts of spaces in university, including the pedagogical, they may carry this into and back to society,” she said.

Educating for equality

Empowering society and fighting for justice are some of the crucial contributions made possible through fostering the epistemic capability of all students. “The capability requires that each student is recognised as both a knower and teller, a receiver and a contributor in critical meaning and knowledge, and an epistemic agent in processes of learning and critical thinking,” states Prof Walker.

In a young democracy like South Africa’s, inclusive public reasoning becomes all the more essential in order to achieve equality, uphold rights and sustain democracy as enshrined in the constitution, thereby improving people’s lives. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept