Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 May 2019 | Story Eloise Calitz | Photo Charl Devenish
Gangster book Discussion
From left: Jacques van Wyk from the Association of Certified Fraud Examiners (ACFE) Cathy Dlodlo, news editor from OFM; Pieter Roux from the UFS Business School; Alta Vermeulen from the UFS Department of Political Studies and Governance and Pieter-Louis Myburgh, author

A packed Odeion Auditorium at the University of the Free State was welcomed by Professor Helena van Zyl, Head of the UFS Business School. The reason being, a panel discussion with award-winning investigative reporter and author, Pieter-Louis Myburgh, on his much-publicised book Gangster State: Unravelling Ace Magashule's Web of Capture. The programme took the form of a panel discussion. The panellists included Pieter-Louis Myburgh, author; Jacques van Wyk from the Association of Certified Fraud Examiners (ACFE); Cathy Dlodlo, news editor from OFM; Alta Vermeulen from the UFS Department of Political Studies and Governance; and Pieter Roux from the UFS Business School.

In his introduction, Myburgh said he was happy that he was able to come to Bloemfontein and have the discussion, since South Africans should cherish freedom of speech and a free press.

The research for the book took 13 months to conclude, and during this time he spent a lot of time in the Free State and Bloemfontein. He mentioned that the book gave him the opportunity to present a condensed account of what he discovered; he could therefore share more, as opposed to just reporting on a story in the newspaper. For him, investigative reporting should always be fact based and open to scrutiny.

Some of the topics raised by the panel was concern about the perception that investigative journalists are focusing more on corruption in the public sector and less on the private sector. This was, however, discarded as a myth, as Myburgh pointed out that he exposed both private and public sector dealings in order to provide the full scope of involved parties.

Focusing on whistle blowers, the panel challenged the verification of whistle-blower information. Myburgh responded that journalists never use only one whistle-blower’s evidence, since that is merely the start of the investigation. Further investigation was necessary, and facts had to be verified. With that said, there is still a lot to be done with regard to the protection of whistle-blowers, he concluded.

The floor was opened to the audience, which provided the opportunity to ask questions and raise concerns about what was mentioned during the panel discussion. The audience eagerly participated in the discussion. In conclusion, Myburgh reiterated that society plays a vital role in keeping those in power to the promises they make.

After the discussion, the audience had the opportunity to have their books signed by the author.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept