Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 May 2019 | Story Eloise Calitz | Photo Charl Devenish
Gangster book Discussion
From left: Jacques van Wyk from the Association of Certified Fraud Examiners (ACFE) Cathy Dlodlo, news editor from OFM; Pieter Roux from the UFS Business School; Alta Vermeulen from the UFS Department of Political Studies and Governance and Pieter-Louis Myburgh, author

A packed Odeion Auditorium at the University of the Free State was welcomed by Professor Helena van Zyl, Head of the UFS Business School. The reason being, a panel discussion with award-winning investigative reporter and author, Pieter-Louis Myburgh, on his much-publicised book Gangster State: Unravelling Ace Magashule's Web of Capture. The programme took the form of a panel discussion. The panellists included Pieter-Louis Myburgh, author; Jacques van Wyk from the Association of Certified Fraud Examiners (ACFE); Cathy Dlodlo, news editor from OFM; Alta Vermeulen from the UFS Department of Political Studies and Governance; and Pieter Roux from the UFS Business School.

In his introduction, Myburgh said he was happy that he was able to come to Bloemfontein and have the discussion, since South Africans should cherish freedom of speech and a free press.

The research for the book took 13 months to conclude, and during this time he spent a lot of time in the Free State and Bloemfontein. He mentioned that the book gave him the opportunity to present a condensed account of what he discovered; he could therefore share more, as opposed to just reporting on a story in the newspaper. For him, investigative reporting should always be fact based and open to scrutiny.

Some of the topics raised by the panel was concern about the perception that investigative journalists are focusing more on corruption in the public sector and less on the private sector. This was, however, discarded as a myth, as Myburgh pointed out that he exposed both private and public sector dealings in order to provide the full scope of involved parties.

Focusing on whistle blowers, the panel challenged the verification of whistle-blower information. Myburgh responded that journalists never use only one whistle-blower’s evidence, since that is merely the start of the investigation. Further investigation was necessary, and facts had to be verified. With that said, there is still a lot to be done with regard to the protection of whistle-blowers, he concluded.

The floor was opened to the audience, which provided the opportunity to ask questions and raise concerns about what was mentioned during the panel discussion. The audience eagerly participated in the discussion. In conclusion, Myburgh reiterated that society plays a vital role in keeping those in power to the promises they make.

After the discussion, the audience had the opportunity to have their books signed by the author.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept