Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Successful conviction on edible oil adulteration
2009-03-28

A successful conviction in the South African food industry for selling diluted olive oil under the guise of virgin olive oil was handed down in the Special Commercial Crimes Court in Durban this week.

Salvatore Pollizi, owner of the company Ital Distributors, pleaded guilty in terms of Section 105A of the Crime Prosecuting Act to selling fake virgin olive oil under the names of Antico Frantoio and Ulivo.

He was sentenced to a fine of R250 000 or three years’ imprisonment, of which R130 000 or 18 months imprisonment is suspended for five years, on condition that he is not found guilty of fraud or theft or an attempt to commit such crimes during the period of suspension.

The offence was committed in 2001 when the scandal involving olive oil being mixed with a cheaper edible oil and being sold as the more expensive virgin olive oil was uncovered by scientists from the University of the Free State (UFS) in Bloemfontein, in collaboration with Mr Guido Costas, The Olive Growers’ Association, AgriInspec and the South African Police Services.

According to Prof. Lodewyk Kock, Head of the South African Fryer Oil Initiative (SAFOI) that is based at the UFS, the conviction is to his knowledge the first successful conviction of this kind in the South African food industry.

Prof. Kock said, “The court’s decision on Monday, 23 March 2009 is good news to our country and sends out a dire warning to all fraudsters in the food industry.”

He attributed the successful conviction to the active and enthusiastic participation by Advocate Joanna Bromley-Gans from the Special Commercial Crime Unit (SCCU) in Durban, Captain Pragasen Govender from the Serious Economic Offences Unit (SEOU) in Pretoria and the team from SAFOI.

Prof. Kock said that in 2003 some of the prominent members of the edible oil industry took responsibility for the authenticity of their own oils by appointing outside laboratories for routine monitoring.

In some cases a seal of approval from such laboratories is displayed on the monitored oil containers. This is an attempt to inform oil distributors, shop buyers and consumers that these oils have been monitored by an outside laboratory for authenticity.

This “policing” has been supported by major role players in the fast-food sector like Nando’s, Spur, Captain Dorego’s, King Pie Holdings, etc. and various oil distributors like Felda Bridge Africa, Willowton Oil & Cake Mills, Refill Oils, etc.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel:  051 401 2584
Cell:  083 645 2454
E-mail:  loaderl.stg@ufs.ac.za
27 March 2009




 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept