Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

International speakers discuss diversity
2014-02-11

 
Dr Charles Alexander from UCLA
Photo: O'Ryan Heideman

International and local experts recently gathered on the Bloemfontein Campus to deliberate over the topic of diversity.

Student participation and mobility dramatically increased in higher education worldwide. Cultural, political, economic and social factors on a national and global scale, have brought the reality of diversity into the operational spaces of Higher Education Institutions. These challenges are not exclusive to South Africa, though. In the Netherlands and USA, universities are also challenged by the demands of an increasingly diverse student population.

Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, acted as one of the keynote speakers during a two-day colloquium hosted by the Institute for Reconciliation and Social Justice. In an impelling address, Prof Jansen argued that change cannot be affected on a university campus if the surrounding community does not change as well. He also noted the spread of a culture of silence surrounding issues of misbehaviour. He urged that we need to find courage again to speak out. From the level of government, media and churches to the private spaces of our homes, we have to co-create an environment of care.

This message closely tied in with that of Prof Shirley Tate’s from the University of Leeds. In her keynote, she asserted that mere tolerance of someone different from you can lead to even more alienation. The path to true reconciliation is grounded in the intimacy of friendship. Friendship and empathy lead to trust and transcend racism.

Another keynote speaker from abroad, Dr Charles Alexander from the University of California, delineated a model for inclusive excellence. He explained that the major problem of true transformation is not due to a lack of ideas, but in the implementation thereof. “Realities of implementation short circuit the change process,” he said. He explained how campus environments can adapt in order to support and enhance lasting inclusivity.

We have to become complicit in the process of transformation, Prof Dr Ghorashi, Professor of Diversity and Integration at the Vrije Universiteit Amsterdam, conveyed. Linking up with the issue of silence, she demonstrated the power of speaking out, using examples from her extensive research among victims of violence. It is imperative, she maintains, that for transformation to materialise, we need to create safe spaces in which we can share our vulnerabilities.

Footnote: Due to unfortunate circumstances, both Prof Dr Ghorashi and Prof Shirley Tate could not personally attend the colloquium as planned. Their respective keynotes were read to the audience on their behalf.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept