Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

SA-YSSP scholars attend high level colloquium with policy makers and research stakeholders
2014-02-12

From the left are: Prof Frans Swanepoel, Deputy-Director of the African Doctoral Academy, Drs Aldo Stroebel, Executive Director: International Relations and Cooperation at the National Research Foundation, Priscilla Mensah, co-director of the SA-YSSP, and Ulf Dieckmann from the International Institute for Applied Systems Analysis and Dean of the SA-YSSP.
Photo: Renè-Jean van den Berg

Scholars taking part in the 2nd Southern African Young Scientists Summer Programme (SA-YSSP), attended a one-week seminar hosted by the African Doctoral Academy at the Stellenbosch University, which concluded with a colloquium at the Stellenbosch Institute for Advanced Study.

This was part of the final leg of their three-month stay and studies at the University of the Free State.

This seminar was a capacity development intervention with the purpose of equipping SA-YSSP young scholars with the skills to communicate their research work effectively with different audiences.

The 36 scholars were hand-picked from some of the world’s most promising and top researchers to take part in the novel three-month programme for advanced doctoral candidates. Their research interests closely aligned with the Department of Science and Technology’s (DST) grand challenges and the International Institute for Applied Systems Analysis’ (IIASA) current research programmes regarding global environmental, economic and social change.

The SA-YSSP is an initiative that contributes to the establishment, growth and enhancement of high-level strategic networks internationally. At the same time it develops capacity in systems analysis at the PhD and supervisory levels through research conducted in the areas of the Department of Science and Technology’s (DST) grand challenges.

At the colloquium, students were expected to showcase their work and research according to their various fields of expertise. High-profile policy makers and policy funders, as well as academia and fellow researchers judged and critiqued the work.

Dr Priscilla Mensah from the UFS and co-director of the programme, says it is important for the young scientists to frame their findings in a way that will be relevant to policy makers and the public at large.

“The partnership with the African Doctoral Academy was crucial in this regard since it is a capacity development entity aimed at strengthening and advancing doctoral education, training and scholarship on the African continent. The objective of this week-long capacity strengthening intervention is to equip the young scientists to be able to communicate their research effectively with different audiences, including potential funders and policy makers.

“I am convinced that the young scientists will no longer view policy makers as abstract entities, but as stakeholders who must be engaged to facilitate implementation of evidence-based policy.”

Dr Aldo Stroebel, Executive Director: International Relations and Cooperation, National Research Foundation, says the purpose of the colloquium is to bring together different sectors in one room to look at different challenges holistically, with an emphasis on systems analysis for a common goal.

The SA-YSSP forms part of an annual three-month education, academic training and research capacity-building programme jointly organised by IIASA, based in Austria, the National Research Foundation (NRF) and the DST. IIASA is an international research organisation that conducts policy-oriented scientific research in the three global problem areas of energy and climate change, food and water, and poverty and equity. South Africa’s engagements with IIASA, specifically with regard to the SA-YSSP, relate primarily to the DST’s Ten-Year Innovation Plan.

The UFS is the first institution outside Austria to host the summer programme. Researchers in the programme are, among others, from South Africa and the rest of the African continent, the USA, the Netherlands, India, Hungary, Austria and Germany.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept