Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

UFS discontinues one Masters programme
2006-07-26

As from next year, the University of the Free State (UFS) will no longer offer one of its specialist master’s degrees in education – the M Ed in Education Management.

 The other six M Ed programmes that are currently being offered at the UFS will continue as normal.

 The decision to discontinue one of the M Ed programmes follows a national review of M Ed programmes in Educational Management and Leadership by the Higher Education Quality Committee (HEQC) of the Council on Higher Education (CHE).

 Of the 23 tertiary institutions whose M Ed programmes in Educational Management and Leadership were reviewed by the HEQC, only 7 received full accreditation.   

 “The findings of the HEQC affect only one of our M Ed degree programmes, namely the M Ed in Educational Management,” said Prof Magda Fourie, Vice-Rector: Academic Planning at the UFS

 “We will be paying full attention to the findings of the HEQC with a view to correcting some of the shortcomings that have been identified by the HEQC and will consider submitting a reviewed proposal for such a qualification in two years time,” she said.

 According to Prof Fourie, the programme currently has 30 students enrolled.  “These students – spread across their first and second years of the degree programme – will be allowed to complete their studies with the full support of the UFS and the School of Education,” said Prof Fourie.

 “The qualification that has been awarded to students who have already completed their studies for this specific M Ed in Education Management degree programme remains a valid qualification and is not affected by the HEQC review,” said Prof Fourie.

 She said the UFS welcomed the efforts of the HEQC to ensure that all academic programmes offered by higher education institutions meet certain standards.

“One of the primary problem areas in the M Ed in Educational Management offered by the UFS identified by the HEQC, was that the programme is too practice orientated and must be more theoretical to comply with the academic requirements of a master’s degree.  This was a result of the fact that the programme was initially compiled in consultation with principals and the provincial Department of Education to address their needs,” said Prof Fourie.

“The UFS will in the mean time offer an advanced certificate in Educational Management and Leadership from next year.  This is a new course that will stretch over a period of two years and will ensure that we can still address the needs of teachers and principals,” said Prof Fourie.

 “The UFS remains committed to providing top quality degree programmes in all its six faculties and will continue to work with the HEQC in ensuring that this actually happens,” said Prof Fourie.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za 
25 July 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept