Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 December 2020 | Story Eugene Seegers | Photo Jolandi Griesel
From the left; Tiana van der Merwe, Deputy-director: CTL; Prof Francois Strydom, Director: CTL, and Gugu Tiroyabone, Head of Advising, Access, and Success in CTL.

The UFS has taken an evidence-based approach to managing the impact of the COVID-19 pandemic. Within the first week of lockdown, the Rector and Vice-Chancellor, Prof Francis Petersen, put appropriate governance structures in place, consisting of a COVID-19 Senior Executive Team and seven task teams focused on managing the different aspects and responses to the pandemic. One of these task teams was the Teaching and Learning Management Group (TLMG), chaired by the Vice-Rector: Academic, Dr Engela van Staden. This multi-stakeholder group represents all the environments in the university responsible for teaching, learning, and support to the academic core.

The core function of the TLMG was to ensure that teaching and learning could continue in order to help staff and students to complete the academic year successfully. The first step in the evidence-based response was to understand students’ device access, data access, and connectivity.  The Centre for Teaching and Learning (CTL) developed a survey to which 13 500 students responded. The results showed that 92% of students had an internet-enabled device, 70% could get access to the internet off campus, and 56% had access to a laptop.

The survey was followed by the Vulnerable Student Index (VSI) developed by the Directorate for Institutional Research and Academic Planning (DIRAP), which helped the university to create a better understanding of the vulnerability of about 22 000 students at the UFS. 

#UFSLearnOn is born

Based on VSI results, the UFS immediately initiated the purchase of 3 500 laptops to be distributed to assist more students. In addition, the #KeepCalm, #UFSLearnOn and #UFSTeachOn campaigns were launched. These campaigns are aimed at creating the best possible support for academic staff and students respectively, by adapting existing support and practices most suited to an emergency remote-learning environment. The departure point of both campaigns was to design a response for the constrained environments of our students. 

The #UFSLearnOn for students creates materials that students can download on cellphones and that would provide them with skills and ideas on how to get connected and create an environment where they could study at home. The #UFSLearnOn website has been viewed by more than 77 000 students to date, and the resources were shared with other universities to support a collaborative approach to addressing the COVID-19 challenge. A total of 177 000 Facebook users have been reached by these #UFSLearnOn materials.

The #UFSTeachOn campaign focused on supporting staff to transform their materials and teaching approach to a new reality. Staff members who attended training sessions numbered 3 800, a testament to their commitment to create the best possible response. Both the #UFSLearnOn and #UFSTeachOn campaigns are continuing, with an overwhelmingly positive response from staff and students.

Multi-pronged approach

However, these campaigns would become two of the 16 strategies the UFS has developed to manage the risks created by the pandemic. Creating responses is, however, not enough; you need evidence that these initiatives are making a difference. Therefore, the CTL was tasked with creating a monitoring system using data analytics. To date, 34 reports have served at the weekly TLMG meetings. The reports monitor the number of staff and students on the Learning Management System (LMS), measuring how much time they are spending learning, and whether they are completing assessments. 

During the peak of the first semester, 90% of students were online, supported by academic and support staff. The average performance of students per faculty per campus was monitored. The use of data analytics allowed the UFS to identify students who were not connecting, as part of the #NoStudentLeftBehind initiative. 

A ‘no-harm intervention’

Gugu Tiroyabone, Head of Advising, Access, and Success in CTL, says that this intervention was designed to effect behavioural change while not scaring a student, in an effort to enhance chances of success: “Under the banner of No Student Left Behind (NSLB) at the UFS – a ‘no-harm intervention’ – the task team continuously reflects on the numbers, which provides insights on student behaviour relating to access/engagement on the LMS system. The quantitative data is integrated with students’ qualitative narratives to tailor individualised responsive support through academic advising, tutorial support, and other student-support services in faculties and student affairs. The NSLB was one of many other faculty and institutional initiatives deployed during the pandemic to promote equitable outcomes despite the disparities students face as a result of the pandemic. The NSLB has fast-tracked the use of analytics and student narratives to transform the way we support students and enhance student success by effecting behavioural change that promotes student and institutional agency. NSLB has been an exercise of shared efforts to cultivate effective learning, teaching, and support that has exemplified the UFS’ organisational growth-mindedness. Numbers and words tell a better story – this has helped us become an agile, focused, and responsive institution.”

Keep moving forward

This approach has resulted in 99,95% of students participating in the first semester. The 0,05% (or 204) students who were not able to participate are being supported to continue their studies successfully. 

The success of the UFS’ approach is not only borne out by quantitative evidence, but also by qualitative feedback, such as the following quote sent to an academic adviser on 24 August:

“Thank you so much (adviser’s name); if it wasn't for you, I would have dropped out, deregistered or even committed suicide during this pandemic. I want to say that I have passed all my modules with distinctions, all thanks to you. After all the difficulty of learning I have experienced during this period. Please continue your great work to others (you were truly meant for this job) and God bless you.”

There are hundreds more testimonials like these, which testify to the inspiring efforts of students and staff at the UFS to finish the academic year successfully with very low risk. Some of these testimonials have been captured in the CTL publication, Khothatsa, which means ‘to inspire or uplift’.

News Archive

#Women'sMonth: Long hours in wind and cold weather help to reconstruct Marion Island’s glacial history
2017-08-10

 Description: Liezel Rudolph  Tags: Liezel Rudolph, Process Geomorphology, Marion Island, periglacial geomorphology, Department of Geography  

Liezel Rudolph, lecturer for second-year students in Process
Geomorphology at the University of the Free State (UFS).
Photo: RA Dwight

Liezel Rudolph, a lecturer for second-year students in Process Geomorphology, aims to reconstruct the glacial history of Marion Island through cosmogenic nuclide dating techniques. She is interested in periglacial geomorphology, a study of how the earth’s surface could be formed by ice actions (freezing and thawing of ice).

Liezel is a lecturer in the Department of Geography at the university and is researching landscape development specifically in cold environments such as Antarctica, the Sub-Antarctic islands, and high mountain areas. “My involvement with periglacial geomorphology is largely due to academic giants who have carved a pathway for South Africans,” says Liezel.

Liezel visited Marion Island for the first time during her honours year in 2011, when she investigated the impact of seals on soil conditions and vegetation. Three years later, she visited Antarctica to study rock glaciers.

The challenge of the job
A workday in Antarctica is challenging. “Our time in the field is very limited, so you have to work every possible hour when the weather is not life-threatening: from collecting soil samples, to measuring soil temperature and downloading data, we measure polygons and test the hardness of rocks. The only way to get the amount of work done, is to work long hours in wind and rain with a positive and competent team! We take turns with chores: the person carrying the notebook is usually the coldest, while the rest of us are stretching acrobatically over rocks to get every nook and cranny measured and documented.”

A typical workday
Liezel describes a typical workday: “Your day starts with a stiff breakfast (bacon and eggs and a bowl of oats) and great coffee! After that comes the twenty-minute dressing session: first a tight-fitting under-layer, a middle layer – sweater and T-shirt, and then the outer windbreaker (or a quilt jacket on an extra cold day). Then you start applying sunscreen to every bit of open face area. Beanie on, sunglasses, two pairs of socks, two pairs of gloves. The few kilograms of equipment, one vacuum flask containing an energy drink, one vacuum flask containing drinking water (it would freeze in a regular bottle), and a chocolate bar and piece of biltong for lunch. After this, we drive (on snowmobiles) or fly (in helicopter) to our study area for about eight hours of digging, measuring, downloading, testing and chopping. Back at the base and after a long and tiresome undressing session, we move to the lab with all our data to make sure that it is downloaded safely and captured onto a database. Afterwards, depending on the day of the week, we enjoy a good meal. If you are lucky, such a typical day will coincide with your shower day. We can only shower every second day due to the energy-intensive water production (we have to melt snow) and the sewage system (all the water has to be purified before it could be returned to the environment). Then you grab your eye shield (since the sun is not sinking during summer) and take a nap before the sun continues to shine into the next day.”

Theoretical knowledge broadened 
“Going into the field (whether island or mountains) provides me with an opportunity to test geomorphic theories. Without experience in the field, my knowledge will only be limited to book knowledge. With practical experience, I hope to broaden my knowledge so that I could train my students from experience rather than from a textbook,” says Liezel.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept