Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Ruan Bruwer | Photo Supplied
Nomsa Mathontsi
Nomsa Mathontsi has been training with the South African senior women’s football team since Monday (03/02).

Whether she takes to the field or not, being part of the senior national women’s soccer team is already an accomplishment, says Nomsa Mathontsi. 

The BAdmin student in Economic and Management Sciences has been chosen for the Banyana Banyana squad for the first time. They face Lesotho on Sunday, 8 March 2020 in an international friendly in Johannesburg. There could be two Kovsies on the field, as Mating Monokoane, another University of the Free State student, was selected for Lesotho’s team. Both of them are midfielders.

The 21-year-old Mathontsi, who has been part of the Kovsie football team since 2018, says it will be a dream come true for her to wear the national colours. “Even if I don't get to play, I will still be proud of myself for being able to take on the challenge of going to camp and giving myself a chance to show my talent.”

“We have been together since Monday, 2 March 2020 and it has been the best experience, especially the fact that football has put me in the high-performance centre (South African Football Association girls’ academy), and now I get an opportunity to be with Banyana for the first time.”

“I was shocked when I got the call, but excited to face the challenge because it's never easy to get a call-up to Banyana, you need to work for it,” she says.

According to Mathontsi, who grew up in Mamelodi, Pretoria, her first love was athletics, but that changed during the 2010 World Cup in South Africa.
“I was an athlete back in primary school and it just so happened that I was selected to play football, which I never really enjoyed. I also had the opportunity to be part of the 2010 FIFA World Cup ceremonies, where I developed a love for football.”

News Archive

Breeding of unique game requires a balance between conservation and sustainable use
2014-05-20

 

Game bred for qualities such as unconventional hair colour or horn quality, may on the long term have unexpected consequences for biodiversity and game farming.

This is according to the inaugural lecture of Prof Paul Grobler from the Department of Genetics at the University of the Free State (UFS).

Prof Grobler feels that the consequences of selective breeding should be examined carefully, as there is currently much speculation on the subject without sound scientific information to back it.

“At the moment, colour variation invokes much interest among game farmers and breeders. Unusual colour variants are already available in different game species. These unusual animals usually fetch much higher prices at auctions compared to prices for the ‘normal’ individuals of the species.”

Examples of these unusual variants are springbuck being bred in white, black or copper colours, the black-backed or ‘saddleback’ impala, and the gold-coloured and royal wildebeest.

A black-backed impala was recently sold for R5,7 million.

“Based on genetic theory, good reason exists why these practices need to be monitored, but one should also take care not to make the assumption that selective breeding will inevitably lead to problems,” warns Prof Grobler.

Grobler says that negative characteristics in a species can sometimes unwittingly be expressed during the selection process for a unique colour. “It is seen, for example, in purebred dogs where the breeding of a new race sometimes brings underlying genetic deviations in the species to the front.” He also believes that some of these animals may not be able to adapt to changing environmental conditions.

“However, one should also look at the positive side: because of the good demand for game, including unusual variants, there is much more game in South Africa today than in many decades. Balance should be found between the aims of conservation and the sustainable utilisation of game.”

Research at the UFS’s Department of Genetics is now trying to establish the genetic effects of intensive game breeding and predict the impact on biodiversity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept