Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Ruan Bruwer | Photo Supplied
Nomsa Mathontsi
Nomsa Mathontsi has been training with the South African senior women’s football team since Monday (03/02).

Whether she takes to the field or not, being part of the senior national women’s soccer team is already an accomplishment, says Nomsa Mathontsi. 

The BAdmin student in Economic and Management Sciences has been chosen for the Banyana Banyana squad for the first time. They face Lesotho on Sunday, 8 March 2020 in an international friendly in Johannesburg. There could be two Kovsies on the field, as Mating Monokoane, another University of the Free State student, was selected for Lesotho’s team. Both of them are midfielders.

The 21-year-old Mathontsi, who has been part of the Kovsie football team since 2018, says it will be a dream come true for her to wear the national colours. “Even if I don't get to play, I will still be proud of myself for being able to take on the challenge of going to camp and giving myself a chance to show my talent.”

“We have been together since Monday, 2 March 2020 and it has been the best experience, especially the fact that football has put me in the high-performance centre (South African Football Association girls’ academy), and now I get an opportunity to be with Banyana for the first time.”

“I was shocked when I got the call, but excited to face the challenge because it's never easy to get a call-up to Banyana, you need to work for it,” she says.

According to Mathontsi, who grew up in Mamelodi, Pretoria, her first love was athletics, but that changed during the 2010 World Cup in South Africa.
“I was an athlete back in primary school and it just so happened that I was selected to play football, which I never really enjoyed. I also had the opportunity to be part of the 2010 FIFA World Cup ceremonies, where I developed a love for football.”

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept