Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Valentino Ndaba | Photo Stephen Collett
Lesetja Kganyago, Governor of the South African Reserve Bank
Reserve Bank Governor, Lesetja Kganyago, presented a public lecture at the UFS on 4 March 2020.

With a 7% fiscal deficit on the Gross Domestic Product (GDP) projected by the National Treasury for the 2020/21 financial year, it would not take long to arrive at a dangerous level of debt at the rate that South Africa is borrowing. Although the South African Reserve Bank Governor, Lesetja Kganyago, does not consider a debt to GDP rate of 60% a disaster, he did express his concern regarding the country’s fiscal deficits being over 6% of the GDP.

Governor Kganyago presented a public lecture at the University of the Free State (UFS) on 4 March 2020, focusing on how we should use macro-economic policy and its role in our economic growth problem.

Unsustainable policies 
South Africa’s fiscal situation is not about tight monetary policy. According to the Governor: “Weak growth is endogenous in our fiscal problems. We cannot keep doing what we are doing and hope that growth will recover and save us. Growth is low, in large part, because of unsustainable policy.”

Avoiding an impending crisis
To address the problem, as a policymaker with more than 20 years’ experience, the Governor suggested that the recommendations made by Minister Tito Mboweni be taken into consideration. “The Minister of Finance, Tito Mboweni, is a man who says things that are true even when they are unpopular. His message is that we have to reduce spending and he is right to put this at the centre of our macro-economic debate,” said Governor Kganyago.

The state needs a radical economic turnaround strategy which is able to diminish the risk of losing market access and being forced to ask the International Monetary Fund for help. Governor Kganyago is positive that such a reformative tactic would go beyond monetary policy and ensure that the interest bill ceases to claim more of South Africa’s scarce resources. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept