Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Prof John Mubangizi | Photo Sonia du Toit
Prof John C Mubangizi is Dean: Faculty of Law, University of the Free State.

South Africans are sick and tired of corruption. They are angry, frustrated and despondent. And they have every reason to be. South Africa has many problems: crime, unemployment, poverty, gender-based violence, inequality, low economic growth and now – in common with many other countries – COVID-19. The list goes on and on. What makes corruption the biggest threat among all these is that it cuts across all of them and impacts on their gravity in different ways. 

The South African Constitution envisages a society based on democratic values, social justice and fundamental human rights. The way things are going, that society is never likely to happen. That is because corruption has been, and continues to be, the greatest threat to any possibility of realising that constitutional dream. In South Africa, like everywhere else where corruption is rampant, it occurs both in the public and private sectors, where it affects democracy and human rights by deteriorating institutions and diminishing public trust in government. It impairs the ability of government to fulfil its obligations and ensure accountability in the delivery of economic and social services like healthcare, education, clean water, housing, and social security. This is because corruption diverts funds into private pockets – which impedes delivery of services – thereby perpetuating poverty, inequality, injustice and unfairness. The problem is aggravated when government is the main culprit. “Government” here, of course, refers to the dictionary meaning of the term, namely, “the group of people with the authority to govern a country or state”.

Corruption existed in ancient Egypt, China and Greece

There are those who argue that corruption is as old as mankind and, therefore, it is here to stay. Indeed, corruption is known to have existed in ancient Egypt, ancient China and ancient Greece. In Robert Bolt’s 16th Century play A Man for All Seasons, Richard Rich’s opening remark is “But every man has his price.” In the 1836 play The Government Inspector, Nikolai Gogol cleverly satirised the human greed, stupidity and extensive political corruption in Imperial Russia at the time. And in a recent article in The Conversation (28 August 2020), Steven Friedman wonders why South Africans express shock at corruption when “it is perhaps the country’s oldest tradition.” He locates the advent of corruption in South Africa at the arrival of Jan van Riebeeck in 1652, through to the ensuing colonialism and apartheid. He argues that in reality, “corruption has been a constant feature of South African political life for much of the past 350 years. It is deeply embedded and it will take a concerted effort, over years, not days, to defeat it”. 

Agreed, but does it have to be that way? At the time of Jan van Riebeeck and during the 350 years of colonialism and apartheid, we did not have the legal framework that we have now. Here is a brief overview of that framework.

Read full article here

Opinion article by Professor John C Mubangizi, Dean: Faculty of Law, University of the Free State


News Archive

Young researchers are equipped to participate in projects relevant in global context
2017-09-05

 Description: Wheat genomics Tags: bioinformatics, Dr Renée Prins, Department of Plant Sciences, DNA and RNA, data sets 

This group of early career researchers received bioinformatics
training in Worcester in the UK from Dr Diane Saunders of the
John Innes Centre in the UK.
Photo: Supplied

The interdisciplinary field that develops methods and software tools to understand biological data is known as bioinformatics. According to Dr Renée Prins, a research fellow in the Department of Plant Sciences at the University of the Free State, there are few tertiary institutions in South Africa that offer a postgraduate degree in Bioinformatics.

“Most institutions focus either on humans, human diseases, forest trees and their pathogens.  They usually do not have spare capacity to assist researchers, for instance, those working on crops in the agricultural sector,” Dr Prins said.

Big data sets need significant skills

With the advancements made in genomics such as high throughput DNA marker platforms and next-generation sequencing technologies, the data sets biologists have to deal with have grown massively big and cannot be dealt with unless you have significant computer skills.

Dr Prins believes that all young researchers need some level of training in this field to be effective in future. The British Council Researcher Links, being run by the Newton Fund, gives early career researchers across selected partner countries the opportunity to form international connections through fully funded workshops and travel grants. Dr Prins made use of this opportunity and with the assistance of the Department of Research Development at the UFS, she arranged for Dr Diane Saunders of the John Innes Centre in the UK, a bioinformatician of note, to present training to a group of 20 early career researchers in Worcester in the UK.

Providing training with Dr Saunders were two other bioinformaticians from the UK, Dr Burkhard Steuernagel (John Innes Centre) and Dr Robert Davey (Earlham Institute). From the UFS side, Eleanor van der Westhuizen and Dr Henriëtte van den Berg (former UFS academic) acted as mentors, providing guidance on funding opportunities and career development skills.

Participating in projects in a global context
The researchers attending the training came from research institutions or academia, and they work involving plants (predominantly wheat) or plant pathogens. A limited number of participants from the commercial sector, including private South African companies focusing on plant breeding and molecular genetics lab work on agriculturally important crops also benefited from the training. 

“Tertiary institutions in South Africa have the obligation to ensure that young scientists are equipped with bioinformatics skills. If they are not equipped with the necessary skills, they will not be able to participate in research projects that are relevant in a global context,” said Dr Prins. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept