Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Prof John Mubangizi | Photo Sonia du Toit
Prof John C Mubangizi is Dean: Faculty of Law, University of the Free State.

South Africans are sick and tired of corruption. They are angry, frustrated and despondent. And they have every reason to be. South Africa has many problems: crime, unemployment, poverty, gender-based violence, inequality, low economic growth and now – in common with many other countries – COVID-19. The list goes on and on. What makes corruption the biggest threat among all these is that it cuts across all of them and impacts on their gravity in different ways. 

The South African Constitution envisages a society based on democratic values, social justice and fundamental human rights. The way things are going, that society is never likely to happen. That is because corruption has been, and continues to be, the greatest threat to any possibility of realising that constitutional dream. In South Africa, like everywhere else where corruption is rampant, it occurs both in the public and private sectors, where it affects democracy and human rights by deteriorating institutions and diminishing public trust in government. It impairs the ability of government to fulfil its obligations and ensure accountability in the delivery of economic and social services like healthcare, education, clean water, housing, and social security. This is because corruption diverts funds into private pockets – which impedes delivery of services – thereby perpetuating poverty, inequality, injustice and unfairness. The problem is aggravated when government is the main culprit. “Government” here, of course, refers to the dictionary meaning of the term, namely, “the group of people with the authority to govern a country or state”.

Corruption existed in ancient Egypt, China and Greece

There are those who argue that corruption is as old as mankind and, therefore, it is here to stay. Indeed, corruption is known to have existed in ancient Egypt, ancient China and ancient Greece. In Robert Bolt’s 16th Century play A Man for All Seasons, Richard Rich’s opening remark is “But every man has his price.” In the 1836 play The Government Inspector, Nikolai Gogol cleverly satirised the human greed, stupidity and extensive political corruption in Imperial Russia at the time. And in a recent article in The Conversation (28 August 2020), Steven Friedman wonders why South Africans express shock at corruption when “it is perhaps the country’s oldest tradition.” He locates the advent of corruption in South Africa at the arrival of Jan van Riebeeck in 1652, through to the ensuing colonialism and apartheid. He argues that in reality, “corruption has been a constant feature of South African political life for much of the past 350 years. It is deeply embedded and it will take a concerted effort, over years, not days, to defeat it”. 

Agreed, but does it have to be that way? At the time of Jan van Riebeeck and during the 350 years of colonialism and apartheid, we did not have the legal framework that we have now. Here is a brief overview of that framework.

Read full article here

Opinion article by Professor John C Mubangizi, Dean: Faculty of Law, University of the Free State


News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept