Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

First postgraduate degree in Forensic Genetics in Africa
2010-03-19

 
At the launch were, from the left, front: Ms Christa Swanepoel (Applied Biosystems), Ms Karen Ehlers (Department of Genetics, UFS), Dr Carolyn Hancock and Ms Vanessa Lynch (both from DNA Project). Middle row: Dr. Sphie Mukwana (Director: Biotech Forensics, Kenya), Mr Pierre Joubert (Director: SAPS Forensic Science Laboratory) and Prof. Johan Spies (Chairperson: Department of Genetics, UFS). Back row: Mr Izak van Niekerk (Southern Cross Biotechnologies) and Mr Loen Ehlers (National Prosecution Authority).
Photo: Stephen Collett


The Department of Genetics at the University of the Free State (UFS) recently launched the first postgraduate degree offered by a tertiary institution in Forensic Genetics in Africa.

“We are at the beginning of something special. The UFS has developed the programme with the aim of providing graduates with the skills and knowledge they would require to work in the field of forensic biology. These graduates will be the first group of professionals that have undergone tertiary training in order to assist in the resolution of crime through forensic science in South Africa. It has also put the UFS in the forefront of training of this nature,” said Prof. Johan Spies, the departmental chairperson.

According to Mr Pierre Joubert, Director at the Forensic Science Laboratory (FSL) in Pretoria, students trained in this programme would easily be employed by the FSL since they would have the appropriate applied and technical training in forensic science.

Currently the FSL has no personnel with degrees in forensic science in its employ. It employs B.Sc. graduates in the fields of microbiology, genetics, molecular biology and biochemistry as forensic analysts. These employees then go through an extensive supplementary training programme for about six months.

Dr Sophie Mukwana, Director of Biotech Forensics in Kenya, said the launch of this programme in South Africa would benefit African countries like Kenya which relied on the USA for this kind of training. She said they hoped to partner with the UFS in this venture.

Applied Biosystems and Southern Cross Biotechnology have donated the necessary equipment to the UFS for this training.

“It is not only important that students should see the equipment but they should also know how to operate it,” said Ms Vanessa Lynch, from the DNA Project.

The DNA Project, in conjunction with the FSL and the UFS, has developed the learning materials which will be presented at the UFS from 2011.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  

19 March 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept