Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Amphitheatre to energise student life on the Qwaqwa Campus
2015-06-11

The Qwaqwa Campus of the University of the Free State is one of the fastest-growing rural campuses.

Since 2010, the campus has, among other things, built two new student residences, which provide accommodation for an additional 500 students. The old disused boiler room, which was used as a storeroom, has been converted into much-needed ablution and dressing room facilities at the sports fields.  The Faculty of Education now boasts a Technology, Engineering Graphics and Design Education laboratory. The project was funded by the Department of Higher Education and Training.

One of the student priorities is a common space in the form of an open amphitheatre in front of the library.

‘’The amphitheatre is a highly-welcomed structure on our campus as it will provide students with an informal environment to study, socialise and meet,’’ said the Campus Principal, Prof Prakash Naidoo.

‘‘We have erected this on an existing space that was already used for outdoor launches and events on the campus, and is in line with our thinking of energising student life on campus. In addition, we have complemented this with the use of solar energy, so that students can just plug in and charge their phones and laptops while they are in the amphitheatre.”

Excited students, Chibi Mosia and Tshilidzi Matshavha, in final-year Chemistry and Chemistry Honours respectively, concurred that the amphitheatre is a good project for the campus.

‘‘It is an important and distinctive feature for the campus as it adds to the growth of our beautiful campus,’’ said Mosia.

‘’It will also enhance the use of alternative energy sources to reduce the campus's carbon footprint,’’ added Matshavha.

The project is worth almost R2,5 m, and took 12 months to complete. The Department of Higher Education and Training also provided the funds for this project.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept