Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Leonie Bolleurs | Photo Supplied
Adriaan van der Walt
Although several international studies have used temperature metrics to statistically classify their seasonal divisions, a study in which Adriaan van der Walt was involved, would be the first known publication in a South African context using temperature as classification metric.

Gone are the days when we as South Africans would experience a three-month spring season, easing into summer, and then cooling off for three months before we hit winter.

Adriaan van der Walt, Lecturer in the Department of Geography at the University of the Free State (UFS), focuses his research on biometeorology (a specialist discipline exploring the role and climate change in physical and human environments) as well as climatology and geographic information systems.

He recently published an article: ‘Statistical classification of South African seasonal divisions on the basis of daily temperature data’ in the South African Journal of Science.

In this study, which Van der Walt undertook with Jennifer Fitchett, a colleague from the University of the Witwatersrand, data on daily maximum and minimum temperatures was collected from 35 meteorological stations of the South African Weather Service, covering the period between 1980 and 2015.

They went to great lengths to ensure that they had a complete set of data before presenting it to demonstrate seasonal brackets.

First for South Africa

Their statistical seasonal brackets indicate that South Africans now experience longer summers (from October to March), autumn in April and May, winter from June to August, and spring in September.

Although considerable work has been done using rainfall to determine seasonality in Southern Africa, Van der Walt believes that these methods did not work well as there are too many inconsistencies in this approach, as identified by Roffe et al. (2019, South African Geographical Journal). To make matters more complicated – as a semi-arid region, and with desert conditions along the west coast – some regions do not have enough rainfall to use as a classifier.

Temperature, on the other hand, worked well in this study. “Temperature, by contrast, is a continuous variable, and in Southern Africa has sufficient seasonal variation to allow for successful classification,” says Van der Walt.

He continues: “Although several international studies used temperature metrics to statistically classify their seasonal divisions, this study would be the first known publication in a South African context using temperature as classification metric.”

Van der Walt says what we understand as seasons largely relates to phenology – the appearance of blossoms in spring, the colouration and fall of leaves in autumn, and the migration of birds as a few examples. “These phenological shifts are more sensitive to temperature than other climatic variables.”

Seasonal brackets

According to Van der Walt, they believe that a clearly defined and communicated method should be used in defining seasons, rather than just assigning months to seasons.

“One of the most important arguments of our work is that one needs to critically consider breaks in seasons, rather than arbitrarily placing months into seasons, and so we welcome any alternate approaches,” he says.

A number of sectors apply the temperature-based division to their benefit. “For example, in the tourism sector it is becoming increasingly important to align advertising with the season most climatically suitable for tourism,” says Van der Walt.

Temperature-based division is also used to develop adaptive strategies to monitor seasonal changes in temperature under climate change. However, Van der Walt points out that each sector will have its own way of defining seasons. “Seasonal boundaries should nevertheless be clearly communicated with the logic behind them,” he says.

News Archive

Geology researcher wins international photographic contest
2017-06-02

Description: Dr Elizaveta Kovaleva Tags: Dr Elizaveta Kovaleva

In this winning photo, “Movement of the ancient sand”,
Dr Matthew Huber, postdoctoral research fellow in the
Department of Geology at UFS, is scaling an outcrop
of sandstone (former sand dunes) in the Zion National
Park in the US.
Photo: Dr Elizaveta Kovaleva


Dr Elizaveta Kovaleva and Dr Matthew Huber, postdoctoral research fellows in the Department of Geology at the University of the Free State (UFS), attended the European Geosciences Union (EGU) General Assembly in Vienna, Austria in April 2017, where Dr Kovaleva was declared a winner of the EGU photo contest with a photograph entitled “Movement of the ancient sand”.

Submitting the winning photo
Each participant could submit up to three photos to participate in the contest before the conference. From all the photographs 10 were selected and displayed for the entire week at the assembly so participants could vote for their three favourite photos. At the end of the week three winners were selected. The prize winners received a free EGU book of their choice, free registration for next year’s EGU and an option to judge the photo competition next year. The photos will be printed on postcards next year, so all participants can send them wherever they want around the globe.

“The picture was taken in the Zion National Park in the US. Myself and Dr Huber were travelling around the western states, visiting national parks. The person in the picture is Dr Huber,” said Dr Kovaleva.

Dr Kovaleva was also invited to participate - as a recently published author - in a workshop, called: ”Publishing in EGU journals: Solid Earth and Earth Surface Dynamics – Meet the Editors”.

At the assembly, Dr Kovaleva attended sessions on Tectonics and Structural Geology as well as on Geochemistry, Mineralogy, Petrology and Volcanology. These sessions were especially interesting in the scope of her research and are directly related to it. “I am a metamorphic petrologist, and with my PhD, I essentially studied microstructures. At the moment, I am studying the Vredefort impact crater, which has experienced both metamorphism and deformation,” she said.

“The winning photos will be printed on postcards,
so all participants can send them wherever they
want around the globe”.

Building scientific connections
For both researchers, the assembly was an opportunity to meet former colleagues and professors from universities all over the world and shake hands with authors whose papers and work they were familiar with, but had never met in person.

“EGU is a perfect opportunity to build scientific connections and relationships, advertise your research and start new collaborations and projects,” said Dr Kovaleva.

The EGU General Assembly 2017 was a great success, with 4 849 oral, 11 312 poster, and 1 238 PICO presentations. Some 649 unique scientific sessions, together with 88 short courses and 322 side events, created an interesting programme. At the conference 14 496 scientists from 107 countries participated, of whom 53% were under the age of 35. Thirty one were from South Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept