Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Leonie Bolleurs | Photo Supplied
Adriaan van der Walt
Although several international studies have used temperature metrics to statistically classify their seasonal divisions, a study in which Adriaan van der Walt was involved, would be the first known publication in a South African context using temperature as classification metric.

Gone are the days when we as South Africans would experience a three-month spring season, easing into summer, and then cooling off for three months before we hit winter.

Adriaan van der Walt, Lecturer in the Department of Geography at the University of the Free State (UFS), focuses his research on biometeorology (a specialist discipline exploring the role and climate change in physical and human environments) as well as climatology and geographic information systems.

He recently published an article: ‘Statistical classification of South African seasonal divisions on the basis of daily temperature data’ in the South African Journal of Science.

In this study, which Van der Walt undertook with Jennifer Fitchett, a colleague from the University of the Witwatersrand, data on daily maximum and minimum temperatures was collected from 35 meteorological stations of the South African Weather Service, covering the period between 1980 and 2015.

They went to great lengths to ensure that they had a complete set of data before presenting it to demonstrate seasonal brackets.

First for South Africa

Their statistical seasonal brackets indicate that South Africans now experience longer summers (from October to March), autumn in April and May, winter from June to August, and spring in September.

Although considerable work has been done using rainfall to determine seasonality in Southern Africa, Van der Walt believes that these methods did not work well as there are too many inconsistencies in this approach, as identified by Roffe et al. (2019, South African Geographical Journal). To make matters more complicated – as a semi-arid region, and with desert conditions along the west coast – some regions do not have enough rainfall to use as a classifier.

Temperature, on the other hand, worked well in this study. “Temperature, by contrast, is a continuous variable, and in Southern Africa has sufficient seasonal variation to allow for successful classification,” says Van der Walt.

He continues: “Although several international studies used temperature metrics to statistically classify their seasonal divisions, this study would be the first known publication in a South African context using temperature as classification metric.”

Van der Walt says what we understand as seasons largely relates to phenology – the appearance of blossoms in spring, the colouration and fall of leaves in autumn, and the migration of birds as a few examples. “These phenological shifts are more sensitive to temperature than other climatic variables.”

Seasonal brackets

According to Van der Walt, they believe that a clearly defined and communicated method should be used in defining seasons, rather than just assigning months to seasons.

“One of the most important arguments of our work is that one needs to critically consider breaks in seasons, rather than arbitrarily placing months into seasons, and so we welcome any alternate approaches,” he says.

A number of sectors apply the temperature-based division to their benefit. “For example, in the tourism sector it is becoming increasingly important to align advertising with the season most climatically suitable for tourism,” says Van der Walt.

Temperature-based division is also used to develop adaptive strategies to monitor seasonal changes in temperature under climate change. However, Van der Walt points out that each sector will have its own way of defining seasons. “Seasonal boundaries should nevertheless be clearly communicated with the logic behind them,” he says.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept