Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Leonie Bolleurs | Photo Supplied
Adriaan van der Walt
Although several international studies have used temperature metrics to statistically classify their seasonal divisions, a study in which Adriaan van der Walt was involved, would be the first known publication in a South African context using temperature as classification metric.

Gone are the days when we as South Africans would experience a three-month spring season, easing into summer, and then cooling off for three months before we hit winter.

Adriaan van der Walt, Lecturer in the Department of Geography at the University of the Free State (UFS), focuses his research on biometeorology (a specialist discipline exploring the role and climate change in physical and human environments) as well as climatology and geographic information systems.

He recently published an article: ‘Statistical classification of South African seasonal divisions on the basis of daily temperature data’ in the South African Journal of Science.

In this study, which Van der Walt undertook with Jennifer Fitchett, a colleague from the University of the Witwatersrand, data on daily maximum and minimum temperatures was collected from 35 meteorological stations of the South African Weather Service, covering the period between 1980 and 2015.

They went to great lengths to ensure that they had a complete set of data before presenting it to demonstrate seasonal brackets.

First for South Africa

Their statistical seasonal brackets indicate that South Africans now experience longer summers (from October to March), autumn in April and May, winter from June to August, and spring in September.

Although considerable work has been done using rainfall to determine seasonality in Southern Africa, Van der Walt believes that these methods did not work well as there are too many inconsistencies in this approach, as identified by Roffe et al. (2019, South African Geographical Journal). To make matters more complicated – as a semi-arid region, and with desert conditions along the west coast – some regions do not have enough rainfall to use as a classifier.

Temperature, on the other hand, worked well in this study. “Temperature, by contrast, is a continuous variable, and in Southern Africa has sufficient seasonal variation to allow for successful classification,” says Van der Walt.

He continues: “Although several international studies used temperature metrics to statistically classify their seasonal divisions, this study would be the first known publication in a South African context using temperature as classification metric.”

Van der Walt says what we understand as seasons largely relates to phenology – the appearance of blossoms in spring, the colouration and fall of leaves in autumn, and the migration of birds as a few examples. “These phenological shifts are more sensitive to temperature than other climatic variables.”

Seasonal brackets

According to Van der Walt, they believe that a clearly defined and communicated method should be used in defining seasons, rather than just assigning months to seasons.

“One of the most important arguments of our work is that one needs to critically consider breaks in seasons, rather than arbitrarily placing months into seasons, and so we welcome any alternate approaches,” he says.

A number of sectors apply the temperature-based division to their benefit. “For example, in the tourism sector it is becoming increasingly important to align advertising with the season most climatically suitable for tourism,” says Van der Walt.

Temperature-based division is also used to develop adaptive strategies to monitor seasonal changes in temperature under climate change. However, Van der Walt points out that each sector will have its own way of defining seasons. “Seasonal boundaries should nevertheless be clearly communicated with the logic behind them,” he says.

News Archive

Traditional medicine can play important role in modern drugs discovery
2014-11-11

Indigenous knowledge possesses a great potential to improve science. Making use of this source may lead to advanced technological innovations. This is according to Dr Sechaba Bareetseng, UFS alumnus and Indigenous Knowledge Systems (IKS) Manager at the Council for Scientific and Industrial Research (CSIR).
Dr Bareetseng recently addressed the seventh annual IKS symposium on the Qwaqwa Campus.
“Interfacing indigenous and local knowledge with scientific knowledge has the potential of encouraging and developing inventions, especially in the pharmaceutical industry,” said Dr Bareetseng.
 
“Such interfacing can also enable access to both sets of knowledge without any discrimination whatsoever. It would also encourage co-existence that would improve understanding between the two.”
 
“Traditional medicine,” said Dr Bareetseng, “can play an extended role in modern drugs discovery as it is already happening in Botswana and New Zealand. These two countries are leading this wave of new thinking in as far as drug development is concerned.”
 
Dr Bareetseng also called on established researchers to start embracing the local communities into their research.
 
“Contemporary scientific research demands that local communities must co-author research conducted within and with them by the universities and research institutions. This would help in maintaining trust between the researchers and the communities that feel exploited. Regular feedback would also make communities feel part of the developments,” Dr Bareetseng argued.
 
He further called on the pharmaceutical companies specifically and researchers in general to convert valuable indigenous knowledge and resources into products and services of commercial value. “Plants, the ecosystem and indigenous knowledge must be preserved to provide a source of income for the local communities. Communities must also be protected from foreign exploitation of their intellectual property.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept