Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Leonie Bolleurs | Photo Supplied
Adriaan van der Walt
Although several international studies have used temperature metrics to statistically classify their seasonal divisions, a study in which Adriaan van der Walt was involved, would be the first known publication in a South African context using temperature as classification metric.

Gone are the days when we as South Africans would experience a three-month spring season, easing into summer, and then cooling off for three months before we hit winter.

Adriaan van der Walt, Lecturer in the Department of Geography at the University of the Free State (UFS), focuses his research on biometeorology (a specialist discipline exploring the role and climate change in physical and human environments) as well as climatology and geographic information systems.

He recently published an article: ‘Statistical classification of South African seasonal divisions on the basis of daily temperature data’ in the South African Journal of Science.

In this study, which Van der Walt undertook with Jennifer Fitchett, a colleague from the University of the Witwatersrand, data on daily maximum and minimum temperatures was collected from 35 meteorological stations of the South African Weather Service, covering the period between 1980 and 2015.

They went to great lengths to ensure that they had a complete set of data before presenting it to demonstrate seasonal brackets.

First for South Africa

Their statistical seasonal brackets indicate that South Africans now experience longer summers (from October to March), autumn in April and May, winter from June to August, and spring in September.

Although considerable work has been done using rainfall to determine seasonality in Southern Africa, Van der Walt believes that these methods did not work well as there are too many inconsistencies in this approach, as identified by Roffe et al. (2019, South African Geographical Journal). To make matters more complicated – as a semi-arid region, and with desert conditions along the west coast – some regions do not have enough rainfall to use as a classifier.

Temperature, on the other hand, worked well in this study. “Temperature, by contrast, is a continuous variable, and in Southern Africa has sufficient seasonal variation to allow for successful classification,” says Van der Walt.

He continues: “Although several international studies used temperature metrics to statistically classify their seasonal divisions, this study would be the first known publication in a South African context using temperature as classification metric.”

Van der Walt says what we understand as seasons largely relates to phenology – the appearance of blossoms in spring, the colouration and fall of leaves in autumn, and the migration of birds as a few examples. “These phenological shifts are more sensitive to temperature than other climatic variables.”

Seasonal brackets

According to Van der Walt, they believe that a clearly defined and communicated method should be used in defining seasons, rather than just assigning months to seasons.

“One of the most important arguments of our work is that one needs to critically consider breaks in seasons, rather than arbitrarily placing months into seasons, and so we welcome any alternate approaches,” he says.

A number of sectors apply the temperature-based division to their benefit. “For example, in the tourism sector it is becoming increasingly important to align advertising with the season most climatically suitable for tourism,” says Van der Walt.

Temperature-based division is also used to develop adaptive strategies to monitor seasonal changes in temperature under climate change. However, Van der Walt points out that each sector will have its own way of defining seasons. “Seasonal boundaries should nevertheless be clearly communicated with the logic behind them,” he says.

News Archive

Chemistry postgraduates tackle crystallography with eminent international researcher
2017-04-04

Description: Dr Alice Brink  Tags: Dr Alice Brink

Department of Chemistry senior lecturer, Dr Alice Brink(left),
hosted outstanding researcher, Prof Elspeth Garman (right)
from the University of Oxford in England to present a
crystallography lecture.
Photo: Rulanzen Martin



“Crystallography forms part of everyday life.” This is according to Prof Elspeth Garman, eminent researcher from the Department of Biochemistry, University of Oxford in England, who was hosted by Dr Alice Brink, Department of Chemistry at the University of the Free State (UFS) Bloemfontein Campus. Prof Garman presented a lecture in the Department of Chemistry, titled ‘104 years of crystallography: What has it taught us and where will it lead’. She also taught the postgraduate students how to refine and mount protein structures in cold cryo conditions at about -173°C.

What is Crystallography?
Crystallography is the scientific technique which allows for the position of atoms to be determined in any matter which is crystalline.
 
“You cannot complete Protein Crystallography without the five key steps, namely obtaining a pure protein, growing the crystal, collecting the data, and finally determining the structure and atomic coordinates,” said Prof Garman. Apart from teaching, she was also here to mentor and have discussions with UFS Prestige Scholars on how to face academic challenges in the professional environment.

Discovery of the first crystal structure of a TB protein

Prof Garman successfully determined the first crystal structure of a Tuberculosis protein (TBNAT), a project that took about 15 years of research. In partnership with the Department of Pharmacology at Oxford University and an outstanding PhD student, Areej Abuhammad, they managed to grow only one TBNAT crystal, one-fiftieth of a millimetre. They also managed to solve the structure and publish it.

Dr Alice Brink, Senior Lecturer in the Department of Chemistry, says, “It’s an incredible privilege to have Prof Garman here and to have her share her wisdom and knowledge so freely with the young academics.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept