Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2020 | Story Thabo Kessah | Photo Supplied
Siphamandla Shabangu hopes to develop intercontinental networks during the Qatar University webinar.

“Assume you are in a leadership position, what can you do to improve the future of higher education?”
This is one of the questions Qwaqwa Campus SRC member, Siphamandla Shabangu, will be discussing during an international webinar to be hosted by Qatar University on Monday 5 October 2020. He will represent the University of the Free State, South Africa, and the African continent as a panellist to discuss the topic: Preparing for an Unpredictable Future: Global Insights from Higher Education Students. 

“Words to describe how it feels to represent not only my campus or institution, but the whole South African nation can never express this new feeling I have,” said Siphamandla. “I have never been afforded such an auspicious opportunity. This is indeed a new feeling for me, and I will do my best to turn it into a habit. I am honoured to have been selected to represent South Africa in a global academic and leadership space. I am a proud UFS ambassador and hope to one day become the face of the University of the Free State,” he added.

Tough selection process

Siphamandla revealed that the process of selection started with the Career Development office on campus. “I was selected among many greater minds on the Qwaqwa Campus. Fortunately, I further prospered among students across all three campuses of the University of the Free State, and finally became one of the best among the greats. Now, I am proud to be part of six unique panellists from different countries to unpack the impact of COVID-19 on institutions of higher learning. In fact, it is a prestigious honour to be the only African panellist – black African for that matter – in this global panel discussion,” he said.

Looking forward to the webinar

“I would very much like to acquire student lived experiences from countries outside the continent during the COVID-19 pandemic. I am also interested to know what methods of learning are sustainably applied at higher learning institutions from the perspectives of developing and highly developed countries. Moreover, I am eager to find out as to what leadership-inspired methods work best in different continents within the educational space that is gradually consumed by the Fourth Industrial Revolution. Furthermore, I am looking forward to developing international and intercontinental networks that will equip me to best explore opportunities across the globe. The academic space is dominated by intellects, visionaries, hustlers, lifelong learners, problem solvers, and even creative thinkers such as artists. However, it is within us to broaden the potential we have in life. It would be gratifying to know higher education systems from other prominent countries,” said Siphamandla.

The panel discussion will take place on Monday 5 October from 12:00 to13:00 (South African time). Other panellists are from the United Kingdom, Russia, Japan, Turkey, and Qatar. 

Siphamandla is currently serving as the SRC member responsible for Universal Access and Social Justice Council.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept