Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2020 | Story Leonie Bolleurs

The Department of Science and Technology has extended two of the National Research Foundation’s SARChI research chairs at the University of the Free State (UFS). 

The Research Chair in Diseases and Quality of Field Crops, together with the Research Chair in Vector-borne and Zoonotic Pathogens, have both been extended for another five years. 

Prof Maryke Labuschagne, currently Professor of Plant Breeding in the Department of Plant Sciences, is leading the chair on Diseases and Quality of Field Crops.

The Chair on Vector-borne and Zoonotic Pathogens is headed by Prof Felicity Burt from the Division of Virology in the Faculty of Health Sciences.

Prof Corli Witthuhn, Vice-Rector: Research, says it was the hard work and commitment of Profs Labuschagne and Burt that resulted in the extension of the SARChI research chairs. “They have excelled in terms of student supervision and publications in high-impact international journals.  They also serve as mentors for young academics, postdoctoral fellows, and colleagues through their passion for their different fields of interest.”

Prof Witthuhn believes that this extension of the two SARChI chairs speaks of the progress that the UFS has made in terms of developing itself as a research-led university. “We are proud of the two senior academics for their supervision, mentorship, and leadership and their contribution to building our reputation,” she says. 

Diseases and Quality of Field Crops

The focus of the research chair in Diseases and Quality of Field Crops is on advancing food security and nutrition in Africa and contributing to poverty reduction and achieving sustainability goals. 

Prof Labuschagne says despite recent advances, the headlines regarding hunger and food security remain alarming: one in nine people on earth will go to bed hungry every night. Globally, 800 million people do not have enough to eat to be healthy, and a third of all deaths among children under five in developing countries are linked to undernourishment. 

She believes the uniqueness and strength of the research chair lies in a two-pronged approach, namely the breeding of cereal crops for resistance to fungal diseases, and improving the quality of crops for processing and consumption, thus making an impact on food security in South Africa and the rest of Africa through this collaborative effort. 

She is confident that the extension of the research chair will allow them to continue and to expand their research, “which has built up a lot of momentum”.

Besides the 12 PhD and 8 MSc degrees they delivered in the first five years, they also contributed significant research outputs and cultivar releases. She adds that they would like to expand on the significant international collaboration they have established. 

Vector-borne and Zoonotic Pathogens

According to Prof Burt, the SARChI chair in Vector-borne and Zoonotic Pathogens builds on existing research strengths at the UFS and aims to contribute towards identifying and investigating medically significant arboviruses and zoonotic viruses in the country.
 
“To date, the research chair has facilitated progress towards establishing serosurveillance studies for various vector-borne viruses, specifically Crimean-Congo haemorrhagic fever virus, a tick-borne and zoonotic virus that causes severe disease with fatalities.”

The team of researchers operating within this research chair is currently also performing studies to determine the seroprevalence of severe acute respiratory coronavirus 2 (SARS-CoV-2) in the Free State.

Prof Burt has always taken the importance of community engagement into account, and with the current pandemic, she believes that it is now more important than ever to increase public awareness of zoonotic diseases.

She emphasises that the majority of new and emerging viruses are zoonotic in origin and that the current SARS-CoV-2 pandemic highlights the impact of an emerging zoonotic pathogen on society. Therefore, she feels that it is important to build capacity in this field and to focus research efforts on identifying and understanding where these pathogens cycle in nature, the potential for spill-over to humans, and what the drivers are for the emergence of these pathogens.

Prof Burt trusts that the renewal of the research chair will allow them to take advantage of the new biosafety laboratory that the UFS has invested in. “This will permit us to research pathogens that were previously excluded from our programme due to biosafety considerations.  The chair will furthermore contribute towards enhancing, strengthening, and developing research and knowledge in the field of epidemiology and pathogenesis of vector-borne and zoonotic viruses,” she says. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept