Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2020 | Story Leonie Bolleurs

The Department of Science and Technology has extended two of the National Research Foundation’s SARChI research chairs at the University of the Free State (UFS). 

The Research Chair in Diseases and Quality of Field Crops, together with the Research Chair in Vector-borne and Zoonotic Pathogens, have both been extended for another five years. 

Prof Maryke Labuschagne, currently Professor of Plant Breeding in the Department of Plant Sciences, is leading the chair on Diseases and Quality of Field Crops.

The Chair on Vector-borne and Zoonotic Pathogens is headed by Prof Felicity Burt from the Division of Virology in the Faculty of Health Sciences.

Prof Corli Witthuhn, Vice-Rector: Research, says it was the hard work and commitment of Profs Labuschagne and Burt that resulted in the extension of the SARChI research chairs. “They have excelled in terms of student supervision and publications in high-impact international journals.  They also serve as mentors for young academics, postdoctoral fellows, and colleagues through their passion for their different fields of interest.”

Prof Witthuhn believes that this extension of the two SARChI chairs speaks of the progress that the UFS has made in terms of developing itself as a research-led university. “We are proud of the two senior academics for their supervision, mentorship, and leadership and their contribution to building our reputation,” she says. 

Diseases and Quality of Field Crops

The focus of the research chair in Diseases and Quality of Field Crops is on advancing food security and nutrition in Africa and contributing to poverty reduction and achieving sustainability goals. 

Prof Labuschagne says despite recent advances, the headlines regarding hunger and food security remain alarming: one in nine people on earth will go to bed hungry every night. Globally, 800 million people do not have enough to eat to be healthy, and a third of all deaths among children under five in developing countries are linked to undernourishment. 

She believes the uniqueness and strength of the research chair lies in a two-pronged approach, namely the breeding of cereal crops for resistance to fungal diseases, and improving the quality of crops for processing and consumption, thus making an impact on food security in South Africa and the rest of Africa through this collaborative effort. 

She is confident that the extension of the research chair will allow them to continue and to expand their research, “which has built up a lot of momentum”.

Besides the 12 PhD and 8 MSc degrees they delivered in the first five years, they also contributed significant research outputs and cultivar releases. She adds that they would like to expand on the significant international collaboration they have established. 

Vector-borne and Zoonotic Pathogens

According to Prof Burt, the SARChI chair in Vector-borne and Zoonotic Pathogens builds on existing research strengths at the UFS and aims to contribute towards identifying and investigating medically significant arboviruses and zoonotic viruses in the country.
 
“To date, the research chair has facilitated progress towards establishing serosurveillance studies for various vector-borne viruses, specifically Crimean-Congo haemorrhagic fever virus, a tick-borne and zoonotic virus that causes severe disease with fatalities.”

The team of researchers operating within this research chair is currently also performing studies to determine the seroprevalence of severe acute respiratory coronavirus 2 (SARS-CoV-2) in the Free State.

Prof Burt has always taken the importance of community engagement into account, and with the current pandemic, she believes that it is now more important than ever to increase public awareness of zoonotic diseases.

She emphasises that the majority of new and emerging viruses are zoonotic in origin and that the current SARS-CoV-2 pandemic highlights the impact of an emerging zoonotic pathogen on society. Therefore, she feels that it is important to build capacity in this field and to focus research efforts on identifying and understanding where these pathogens cycle in nature, the potential for spill-over to humans, and what the drivers are for the emergence of these pathogens.

Prof Burt trusts that the renewal of the research chair will allow them to take advantage of the new biosafety laboratory that the UFS has invested in. “This will permit us to research pathogens that were previously excluded from our programme due to biosafety considerations.  The chair will furthermore contribute towards enhancing, strengthening, and developing research and knowledge in the field of epidemiology and pathogenesis of vector-borne and zoonotic viruses,” she says. 

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept