Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Two UFS architecture students won prestigious PG Bison 1.618 Competition
2017-10-26

 Description: Bison read more Tags: : Stephan Diedericks, Department of Architecture, Margaux Loubser, Kobus du Preez, Zack Wessels, PG Bison 1.168 Competition 

At the PG Bison 1.618 competition awards ceremony
in Rosebank, were from the left:
Camrin Plaatjes from the University of KwaZulu-Natal;
Stephan Diedericks, winner of the competition;
and Margaux Loubser,
the second-place winner. Both Stephan and
Margaux are studying Architecture at the UFS.
Photo: Supplied



Food that reaches its sell-by date in supermarkets is usually disposed of, but has not yet reached its best-before date.  What happens to this food?  According to Stephan Diedericks, the answer to this is for this food to be repurposed.

Not only does Stephan want to prevent the waste of food – in a world where food security is a challenge – but he also won the prestigious PG Bison 1.618 Competition with his entry in which he suggests that gourmet meals be prepared from food that has reached its sell-by date, and then be served in the Delta Recycletorium. 

Students introduced to park lands in urban areas
Diedericks is a student in the Department of Architecture at the University of the Free State (UFS). Second-place winner in this competition was Margaux Loubser, also a UFS student. Another UFS student, Dehan Kassimatis, was a finalist. They received their awards at a ceremony in Rosebank, Johannesburg, earlier this month. 

The competition, now in its 24th year, was created to recognise the future interior and industrial designers, architects, and key decision-makers in the South African construction industry. It is known not only for the prestige it offers its winners, but also for the tradition-defying brief given to the students each year.

According to lecturers Kobus du Preez and Zak Wessels, in the Department of Architecture, the competition introduced the students to parklands in urban areas. He quotes the competition brief: “Rural to urban migration with the development of commercial and residential property elevates the importance of parklands within cities, in creating a refuge from the hustle of daily life.  These areas are leveraged to encourage healthier living, community interaction and environmental awareness.”

Learning experience more important than prizes
The site that was the focus of the competition is the Environmental Centre, Delta Park Heritage Precinct in Johannesburg. Students needed to transform this old building into a vibrant gastronomic restaurant. “The theme and style of the restaurant was for the student to choose,” said Du Preez. 

Loubser called her restaurant Rooted – a wholefood restaurant.  She was influenced by the geometries of the original Art Deco building. Rooted articulates and integrates the space between nature and the building.  Similar to an Art Deco painting or poster, the landscape is abstracted into terraces which are used to grow vegetables organically.  Vertical green screens soften the divide between the building and its surroundings and it provides shade.

“Our students took their clues from the existing environment and integrated it with a single idea, an abstract concept, which impressed the judges,” Du Preez said. 

Although this is a competition that is well reported in the industry press, Du Preez and Wessels agree that the learning experience for students is much more important than winning the contest. The competition’s brief aligned well with the Department of Architecture’s learning content with its urban focus.

Jacques Steyn, a UFS architecture student, came third in the competition in 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept