Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Founding meeting of the Advisory Panel of the International Institute of Diversity
2008-11-21

The University of the Free State (UFS) today (20 November 2008) successfully convened and hosted the founding meeting of the Advisory Panel of the International Institute of Diversity.

In the wake of the Reitz video incident, the UFS wishes to establish an institute that will study and promote transformation on the campus as a microcosm of the much broader socio-political challenges facing South Africa. It is hoped that in due course the UFS and the institution will develop the expertise and experience to help other organisations and societies in transition.

The institute will work closely with the Transformation Cluster – one of six strategic academic clusters already created as part of the university’s long-term strategic plans.

Given the transformation climate in which it finds itself, the university recognises that the guidance, support and direct involvement of thought leaders and other specialists in the field of transformation are critical to the design and operation of the proposed institute. To this end, the university has established an advisory panel for the institute. The Advisory Panel will give guidance to the Executive Director (to be appointed) in helping with the conceptualisation, design, and development of the institute, and the compilation of its business plan.

Brian Gibson Issue Management facilitated the meeting and is also responsible for the reporting on the meeting. The International Institute for Development and Ethics (IIDE) co-hosted and provided the secretarial support for the meeting.

 


The members of the advisory panel:  

(Click here to read more about the Panel Members)

External panel members:

Dr Clint Le Bruyns, Senior Lecturer in Public Theology and Ethics at the University of Stellenbosch .

Dr Sebiletso Mokone-Matabane, Chief Executive Officer, Sentech Limited.

Dr Andries Odendaal works in the field of conflict transformation with international agencies such as the United Nations, DANIDA and GTZ.

Prof. Lungisile Ntsebeza, National Research Foundation (NRF) Research Chair in Land Reform and Democracy in South Africa in the Department of Sociology, University of Cape Town.

Mr Roger Crawford, Executive Director for Government Affairs and Policy South Africa, Johnson & Johnson.

Prof. Jonathan Jansen, Dean of the Faculty of Education, University of Pretoria 2001 to 2007.

Ms Zandile Mbele, Director of Plessey (PTY) Ltd. and the Transformation Executive for Dimension Data.

Dr André Keet, Director: Transdisciplinary Programme at the University of Fort Hare in October 2008 and part-time Commissioner with the Commission for Gender Equality.


Dr Reitumetse Obakeng Mabokela is an associate professor in the Higher, Adult, and Lifelong Education Program in the Department of Educational Administration at Michigan State University.

Dr Mpilo Pearl Sithole is a senior research specialist in the Democracy and Governance Research Programme at the Human Science Research Council.

Professor Steven Friedman, D.Litt. is Director of the Centre for the Study of Democracy at Rhodes University and the University of Johannesburg.

Representatives from UFS:

Prof. Teuns Verschoor, Vice-Rector: Academic Operations at the University of the Free State, and currently Acting Rector and Vice-Chancellor.

Prof. Piet Erasmus, Interim Co-ordinator for the Cluster Transformation in Highly Diverse Societies.

Prof. Lucius Botes, Director of the Centre of Development Support and Programme Director of the Postgraduate Programme in Development Studies.

Prof. Philip Nel, Former Director of the Centre for Africa Studies at the UFS.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept