Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

JN Boshoff Memorial Lecture: Dr Charles Nwaila
2005-09-13

Dr Charles Nwaila, Director-General of the Free State Provincial Government and Vice-Chairperson of the University of the Free State's (UFS) Council, recently discussed the repositioning of the Free State Provincial  Government to respond to the 21st century demands during the JN Boshoff Memorial Lecture at the UFS. 

 

 

From left:  Dr Nwaila; Prof Tienie Crous, Dean:  Faculty of Economic and Management Sciences; Prof Frederick Fourie, Rector and Vice-Chancellor and Dr Moses Sindane, Departmental Chairperson:  Department of Public Management at the UFS.
 

A summary of the lecture.

Free State government to focus on training of public servants

The Free State provincial government in collaboration with higher education institutions in the province is to establish the Free State Association of Public Administration to get public servants to work effectively towards the growth and development of the province.
This was announced by the Director-General of the Free State provincial government, Dr Charles Nwaila, during a lecture he delivered at the University of the Free State (UFS) in Bloemfontein this evening (Thursday 8 September 2005).

Delivering the annual JN Boshoff Memorial Lecture at the UFS, Dr Nwaila called on higher education institutions to play a critical and leading role in the re-engineering of the existing Provincial Training and Development Institute housed at the Vista campus of the University of the Free State in Bloemfontein.

Dr Nwaila was formerly the Superintendent-General (head) of the Free State Department of Education and currently serves as the Deputy Chairperson of the Council of the University of the Free State.
He said the proposed Free State Association of Public Administration is a joint initiative with the National Academy of Public Administration based in Washington DC.

“We take this opportunity to invite the University of the Free State and other knowledge based institutions to join the Provincial Government in fostering a collaborative network to help us develop our public servants,” Dr Nwaila said.
He said there were accelerating demands and a lot of pressure on limited resources, with Free Staters expecting more from their government than ever before.

“Civil servants in a developmental state are servants of the people, champions of the poor and the downtrodden and not self-serving individuals that seek only advancement on the career ladder,” Dr Nwaila said.
According to Dr Nwaila, the Free State Growth and Development Strategy has identified 11 areas that need to be addressed by the year 2014, including:

• To reduce unemployment from 38% to 20%
• To improve the functional literacy rate from 69,2% to 85%
• To stabilize the prevalence rate of HIV and AIDS  and reverse the spread of the disease
• To provide a free basic service to all households
• To provide adequate infrastructure for economic growth and development


Dr Nwaila said that the Free State government will continue to follow a people-centred approach towards these development objectives with a keen sense of unity and unwavering determination to create the best of times for the Free State and all its people.


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept