Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS unveils portrait of Ms Winkie Direko
2005-11-28

During the unveiling ceremony were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS), Mrs Direko, Judge Faan Hancke (Chairperson of the UFS Council) and Dr Charles Nwaila (Director-General of the Free State Provincial Government and Vice-Chairperson of the UFS Council). The blue background of the portrait depicts Ms Direko's philosophy of "the sky is the limit".  She also wore the same outfit as what she has on in the portrait. Photo:  Stephen Collett

UFS unveils portrait of Ms Winkie Direko  
A portrait of Ms Winkie Direko, former Chancellor of the University of the Free State (UFS) and Premier of the Free State Province and currently a Member of Parliament, was unveiled today during the last session of the UFS Council for this year on the Main Campus in Bloemfontein.

The portrait, painted by the gifted artist Ms Reshada Crouse, now hangs in the Council Chambers of the UFS.

Ms Direko was sworn in as Chancellor of the UFS in August 1999.  She was the first black person and first woman in this position at the UFS. She was succeeded by Dr Franklin Sonn.

“Ms Direko had an exceptional legitimacy in the black community because of her role in black education in the Free State (as principal) and community leader in the difficult ‘struggle’ period.  This former principal’s simultaneous insistence on transformation as well as discipline and order at an educational institution was exactly what the UFS needed at that stage,” said Prof Frederick Fourie, Rector and Vice-Chancellor, during the unveiling ceremony.

“She also played a special role to bring the UFS and the Free State Provincial Government closer to each other.  Her comprehension for the own nature of a university helped in times when difficult decisions had to be made.  She also realised the value of the university’s expertise for her government.  The Premier’s Economic Advisory Council, with the UFS rector and academics like Lucius Botes and James Moses in leading roles, was formed to undertake important research on economic development strategies in the Free State,” said Prof Fourie.

In her speech Ms Direko said that it is an unique experience for her to be catalogued in the history of the UFS.  “I am humbled and proud to be associated with the UFS,” she said.

Ms Direko said that the UFS is on the right track with its transformation process.  “I will continue to convince people that the UFS is for everyone and will fight for that until the end.  But, it is important to see a visible change concerning transformation.  The UFS must bring its side and speed up the transformation process.  I know that it is a difficult road, but we cannot hide from the realities of our time,” she said.
 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
25 November 2005

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept