Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 February 2021 | Story Leonie Bolleurs | Photo istock
The Faculty of Natural and Agricultural Sciences has reorganised three of its departments, and as a result the Departments of Animal Science, Microbiology and Biochemistry, and Sustainable Food Systems and Development have been established.

In a continuous effort to inspire excellence and transform lives, the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has reorganised three of its departments. The entities that were affected include what was known as the Department of Consumer Science; the Department of Animal, Wildlife and Grassland Sciences; and the Division of Food Science.

The Department of Animal, Wildlife and Grassland Sciences has changed to Animal Science, while the Department of Consumer Science and the Centre for Sustainable Agriculture, Rural Development, and Extension (CENSARDE) merged to become the Department of Sustainable Food Systems and Development.

Sustainable food systems

Both the Department of Consumer Science and CENSARDE are major contributors to studies on food systems. According to Prof Johan van Niekerk, Head of the new Department of Sustainable Food Systems and Development, the two academic entities create a natural link that provides the potential for training, development, and research from a food systems perspective to benefit the local and national agri-business sector. 

Prof van Niekerk elaborates: “Food systems can be defined as the processes involved in providing food, fibre, and fuel products. These processes include growing, harvesting, processing, preparing, packaging, transporting, marketing, consumption, and waste management.”

“In terms of the academic structure at the UFS, the processing, preparing, and packaging of food resided within the Department of Consumer Sciences. The processes of growing, harvesting and food production, on the other hand, resided within the Centre for Sustainable Agriculture. The newly established Department of Sustainable Food Systems and Development holds the potential to combine the academic expertise of two separate entities into an interdisciplinary body that focuses on sustainable food systems from a holistic perspective.”

Relevant on a global scale

According to Prof Frikkie Neser, Head of the now Department of Animal Science, it is a worldwide phenomenon that Animal Science and all its related disciplines are classified under the name Animal Science.

As part of the changes in this discipline, Meat Science, Dairy Science, and Wool Science will again be presented within the department. Meat scientist, Prof Arno Hugo, and dairy scientist, Dr Koos Myburgh, and their support staff also joined the department. 

According to Prof Neser, the changes will also lead to the establishment of a Meat and Dairy Unit, an Animal Breeding Genomics and Bioinformatics Unit (ABGB), and a Dairy Processing Unit. The latter will be hosted on the Paradys Experimental Farm outside Bloemfontein.

Prof Neser says that changes to the department will simplify the curriculum without compromising the quality of the content or the professional registration of Animal Science students.

“Students will be exposed to the full value chain in meat, dairy, and wool, and research and product development can be conducted in our own fully equipped facilities,” says Prof Neser.

The changes will also lead to a better service to the industry. “Quality as well as chemical and microbial composition of meat will be tested for the whole meat industry. A similar service will also be provided for the dairy industry,” he says.

“A consulting service will also be available,” adds Prof Neser.

Furthermore, he says that the ABGB Unit will provide a statistical and analytical service to the university and the industry. “With the unit, it is possible to create a research facility that can coordinate and enhance all animal breeding research in the country, which will help South Africa to remain relevant on a global scale.”

As much as it will have a global footprint, the department will also add value on a local basis by presenting short courses in all disciplines for both commercial and emerging farmers, as well as the community as a whole.

“We will also continue to build on relationships with other universities, research and government institutions,” says Prof Neser.

Changes to Division of Food Science 

Another significant change that took place in the faculty was in the Division of Food Science. With the changes taking place in the Division of Food Science, the Department of Microbial, Biochemical and Food Biotechnology is now known as the Department of Microbiology and Biochemistry.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept