Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 February 2021 | Story André Damons | Photo Charl Devenish
Prof Mamello Sekhoacha, Associate Professor from the Department of Pharmacology in the Faculty of Health Sciences, was appointed by Dr Zweli Mkhize, Minister of Health, as the new chairperson of the National Health Research Ethics Council of South Africa (NHREC).

A researcher in the field of drug discovery and development at the University of the Free State (UFS) has been appointed by Dr Zweli Mkhize, Minister of Health, as the new chairperson of the National Health Research Ethics Council of South Africa (NHREC).

Prof Mamello Sekhoacha, Associate Professor from the Department of Pharmacology in the Faculty of Health Sciences, was appointed as a member of the NHREC council in 2013, and later became the chairperson of the NHREC’s Norms and Standards Committee responsible for developing and revising guidelines for health research. Prof Sekhoacha was appointed deputy chairperson of the council in 2018 and has played an integral part in setting ethical standards for conducting health research in the country.

 Responsibilities of the NHREC

The NHREC is the national statutory body responsible for the governance and advancement of health research ethics in South Africa. Some of the responsibilities of the council are to set ethical norms and standards for health research by developing and revising the guidelines pertaining to health research; to promote and monitor compliance with existing regulations by health research ethics committees; and to build capacity in research ethics committees through robust registration and audit processes.

These responsibilities of the NHREC rest on the need to ensure ethical integrity in research involving human participants and animal subjects, and that research is based on sound scientific and ethical principles.

“It is an honour for me to serve on the NHREC for the third term. The NHREC has achieved remarkable outputs over the past three years, and I believe, given the current composition of the council members, this momentum will not be lost. One of the goals of the NHREC is to further broaden the scope of the ethics in health research guidelines from ‘biomedical research’ to ‘health-related research’ to ensure that adequate guidance is provided for those in health-related disciplines, as a response to the changing environment of research involving humans and the broader meaning of health research.” 

“We need more comprehensive guidelines with nuanced commentaries to indicate how the ethical principles that emanated from biomedical research involving humans, could be effectively implemented in other disciplines of health-related research,” says Prof Sekhoacha. 

Global paradigm shift in role and integration of ethics in health research

Having been a council member since 2013, Prof Sekhoacha, whose training spans from pre-clinical laboratory experimentation, the use of animals in research, clinical trials, and working with indigenous communities, says there is a global paradigm shift in the role and integration of ethics in health research in almost all aspects of research, with an increased emphasis on the scientific and social value of research: the prospect of generating the knowledge in a manner that protects and promotes people's health. Considerations of the NHREC go beyond developing ethical guidelines or ensuring the efficient functioning of the ethics committees, to raising awareness among research institutions and researchers to continually promote ethically sound research conduct. 

The subject of ethics in health research is pivotal and reflective of the values of both the institution and the country at large. 

UFS uses Prof Sekhoacha’s expertise on ethics

Prof Sekhoacha is also a co-opted advisory member in the Senate Research Ethics Committee of the UFS and facilitates workshops and seminars on research ethics offered by the Postgraduate School.

Prof Corli Witthuhn, Vice-Rector: Research and Internationalisation, says it is a great honour for the UFS that Prof Sekhoacha has been elected chair of the NHREC.  “The NHREC governs the research ethics processes in South Africa, and it is strategically important for the UFS to now have one of our own academics play such a nationally important role.  We have been using Prof Sekhoacha’s expertise on issues of ethics and we are looking forward to working with her to continue to better our own ethics processes.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept