Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

UFS chemist invited by UNESCO to present lecture at World Science Forum in Budapest
2015-12-07

From the left are: Dr Jean-Paul Ngome Abiaga from UNESCO, France; Abdoulaye Ibrahim, also from UNESCO in France; and Truidie Venter, a young scientist from the Department of Chemistry at the UFS.
Photo: Supplied

Dr Truidie Venter, a young scientist from Inorganic Chemistry in the Department of Chemistry at the University of the Free State (UFS), returned recently from presenting a lecture at the 7th World Science Forum, held in Budapest, Hungary. She was one of the few young researchers world-wide who were invited to attend the forum.

In her capacity as a young female researcher from Africa, Truidie was invited by UNESCO to present her views on science in diplomacy at this event. Her talk focused on collaboration between researchers from different countries, and the challenges faced by young researchers in Africa, and served to initiate discussions between young researchers concerning international, interdisciplinary scientific cooperation.

The Science Forum, an international conference dedicated to science and knowledge, was held in Budapest from 4-7 November 2015. This interdisciplinary gathering is supported by the United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Council for Science (ICSU), and other partners, and is aimed at providing an occasion for representatives of science, politics, international organisations, industrial and financial decision makers, international science forums, and science academies to meet and exchange views.

More than nine hundred delegates from 108 countries took part in this event. The speakers included Her Royal Majesty Princess Sumaya Bint El Hassan, President of the Royal Scientific Society of Jordan, Dr Irina Bokova, the Director-General of UNESCO, Prof Sir Peter Gluckman, first Chief Science Advisor to the Prime Minister of New Zealand, Prof Ene Ergma, former President of the Riigikogu (Estonian Parliament), and Ms Naledi Pandor, Minister of Science and Technology of South Africa.

At the conclusion of the forum, a declaration was accepted regarding the renewal of the scientific community’s commitment to the responsible and ethical use of scientific knowledge in addressing the grand challenges of humankind. This declaration addressed the headings of climate change, new sustainable development paths, disaster risk reduction, scientific advice for policies, international collaboration for capacity-building and mobilisation in the developing world, and balanced investment in science.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept