Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2021 | Story Leonie Bolleurs | Photo UFS Photo Archive
Prof Hendrik Swart played a key role in the Department of Physics acquiring the PHI Quantes XPS system, the first in Africa and one of only 20 in the world.

The state-of-the-art equipment in the Department of Physics at the University of the Free State (UFS) differentiates this department from its competitors. Availability of the equipment makes it possible for researchers as well as students to deliver work that receives national and international recognition. 

Recently, the department acquired a PHI Quantes XPS system, the first in Africa and one of only 20 in the world. 

Creating better phosphor 

“The Quantes XPS system uses X-rays to determine the chemical composition of molecules on the surface of a sample. The system is unique in the sense that it also has an extra X-ray source that can determine the chemical state below the surface, which was not possible in the past.  This will help us to dictate the position of defects in our phosphor materials that will consequently enable us to create better phosphor for solid state lighting as well as solar cell applications,” explains Prof Hendrik Swart, Senior Professor in the Department of Physics, who also holds the SARChI Chair in Solid State Luminescent and Advanced Materials.

After he had the opportunity to observe the system in the factory in Chigasaki, Kanagawa, Japan, where he attended a conference, Prof Swart was very impressed by its performance. He discussed it with Prof Koos Terblans, Head of the department, and other colleagues, and started making plans to buy the system. 

When the department first bought the X-ray photoelectron spectroscopy (XPS) system in 2007/2008, it became the national facility on XPS measurements. Not only is this an upgrade of the XPS system bought 14 years ago, but the new system will enable the department to do more measurements. “The number of samples that we have to handle has just become too much for one system. The new system’s increased capacity for making measurements addresses this challenge and it also gives UFS scientists and postgraduate students more time to spend on fundamental measurements to develop research of a higher level,” says Prof Swart.

(The Quantes XPS system. Photo:Supplied)

Explaining about the measurements, Prof Swart says: “This advanced X-ray photoelectron spectroscopy (XPS) instrument has the capability to analyse the very small area that the user is interested in and a large area of the uniform sample surface. The two different types of X-ray sources – the hard X-ray source and the more conventional soft X-ray source – can be switched automatically, allowing users to analyse the same area and/or points of a sample. The PHI Quantes XPS system ensures the availability of superior features such as automatic analysis, automatic sample transfer, turnkey charge neutralisation, and advanced data processing.”

“This XPS instrument is designed to pioneer new methods and applications transcending conventional ideas of what is possible.”

Optimising efficiency of materials

Prof Swart says the Department of Physics, especially the Research Chair in Advanced and Luminescent Materials, is developing new high-technology materials on a daily basis. “It is very important to know the chemical composition and defect distribution of the materials in order to add value to the fabrication of these materials,” he adds.

“The distribution of these defects is vital for the efficiency of the phosphor materials. If we know where these defects are located, we can determine the mechanisms of the light output coming from these phosphors,” describes Prof Swart.

Research conducted as part of the Research Chair in Solid State Luminescent and Advanced Materials will benefit significantly from this new system.

(Prof Koos Terblans, Head of the Department of Physics next to the Quantes XPS system. Photo:Supplied) 

“We are currently concentrating on phosphors as sensors (temperature), light-emitting diodes (LEDs), and solar cells, where we optimise the efficiency and durability of these materials. Any new knowledge, which I believe the PHI Quantes XPS system will provide us, will help us to reach our goal much quicker,” he says. 

Apart from the positive impact on research, the PHI Quantes XPS system will also be a benefit to society in the long term. Improved LEDs can be used to save electricity, and better solar cells can help to generate electricity, to mention but two examples. 

News Archive

King Moshoeshoe comes alive on national television
2004-11-02

Honourable Bethuel Pakalitha Mosisili, Prime Minister of Lesotho, and his wife; King Letsie III of Lesotho and Dr Ezekiel Moraka, Vice-Rector: Student Affairs at the UFS during the première of the film at the Royal Palace in Lesotho

The ground-breaking documentary film on the life and legacy of King Moshoeshoe, the founder of the Basotho nation, will come alive on Thursday 4 November 2004 when it is screened on SABC2 at 21:00

The film, called Moshoeshoe: The Renaissance King, forms part of a larger project by the University of the Free State (UFS) to honour the Moshoeshoe legacy of nation-building and reconciliation and to explore his role as a model of African leadership. It was produced by the well-known journalist Mr Max du Preez and commissioned by the UFS as part of its centenary celebrations.

The SABC2 screening was preceded by a première in Bloemfontein last month, and was attended by provincial political leaders.

This past weekend there was a première at the Royal Palace in Lesotho, which was attended by King Letsie III, the prime minister, the chief justice, judges, the president of the senate, cabinet ministers and directors-general.

“Through this documentary film the UFS commits itself to developing a shared appreciation of the history of this country and to the establishment of the Free State Province as a model of reconciliation and nation-building. King Moshoeshoe is also a strong common element, and binding factor, in the relationship between South Africa/the Free State, and its neighbour, Lesotho,” said Prof Frederick Fourie, Rector and Vice-Chancellor of the UFS.

“Not all people in South Africa know the history of Moshoeshoe. Many Basotho – but not all – are well versed in the history of Moshoeshoe, and his name is honoured in many a street, town and township. Many white people know little of him, or have a very constrained or even biased view of his role and legacy. In Africa and the world, he is much less known than, for instance, Shaka,” said Prof Fourie.

“King Moshoeshoe did a remarkable thing in forging a new nation out of a fragmented society. He also created a remarkable spirit of reconciliation and a remarkable spirit of leadership,” said Prof Fourie.

According to Prof Fourie we already benefit from his legacy: the people of the Free State share a tradition of moderation and reconciliation rather than one of aggression and domination. “For the UFS this is also part of real transformation – of creating a new unity amidst our diversity,” said Prof Fourie.

“We also find in the legacy of King Moshoeshoe the possibility of a “founding philosophy”, or “defining philosophy”, for the African renaissance. To develop this philosophy, we must gain a deeper understanding of what really happened there, of his role, of his leadership. Therefore the UFS will encourage and support further research into the history, politics and sociology of the Moshoeshoe period, including his leadership style,” said Prof Fourie.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
2 November 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept