Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2022 | Story Lunga Luthuli | Photo Supplied
Lizandré Mulder
Lizandré Mulder, University of the Free State LLB graduate, does not believe in having a role model, but in striving to be a better version of herself.

Moving from Jansenville – a town outside Uitenhage – to Bloemfontein for her LLB studies, things got off to a shaky start for Lizandré Mulder. New in a ‘big town’, the ‘country girl’ felt out of her element and not used to big-city life. Thanks to her lecturers, the journey to a legal qualification at the University of the Free State (UFS) ended with an average final-year mark of 80% for the Law graduate.

Back in Jansenville, Lizandré’s neighbour nicknamed her ‘klein prokureurtjie (little lawyer)’ as she was growing up, because she had a ‘habit of arguing’, which motivated her to choose law as a career. She says, “arguing with facts earlier, has turned into a passion”. “The competitive side of me always wants to win; I guess that makes me the perfect candidate for a future advocate,” she says.

Managing undergraduate studies, Lizandré – who is also an accomplished athlete – says all she did was study and train. “The only thing I struggled with was my sleeping schedule, as I was constantly tired from hard training, and I studied till the morning hours while I had to wake up again early for morning training.”

The track, field, and cross-country runner has received numerous national medals for the sport and will unfortunately miss the invitation to the annual Excellence Awards in the Faculty of Law, as she will be competing in this year’s South African Athletics Championships in Cape Town on 22 April 2022.

Graduating with the LLB degree, Lizandré plans to finish her master’s degree with a possible topic on the legality of human gene editing in South Africa for the purposes of disease treatment or the prevention thereof.

Lizandré does not believe in having a role model, but to “always try to better myself in every aspect of life. I always believed that true inspiration and motivation come from within”.

After completing her master’s degree, Lizandré will decide on her future career path. She says: “I am still deciding whether I want to remain in Bloemfontein or relocate to Potchefstroom, as the latter has a law firm specialising in medical negligence, a field I would like to specialise in. Besides this, the two cities also boast the best athletics coaches in DB Prinsloo, Head of KovsieSport, and Jean Verster in Potchefstroom has mentored South African award-winning runner, Caster Semenya.

“Somewhere in the future, I definitely also plan on doing my doctoral degree in Law,” says Lizandré.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept