Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2022 | Story Lunga Luthuli | Photo Supplied
Lizandré Mulder
Lizandré Mulder, University of the Free State LLB graduate, does not believe in having a role model, but in striving to be a better version of herself.

Moving from Jansenville – a town outside Uitenhage – to Bloemfontein for her LLB studies, things got off to a shaky start for Lizandré Mulder. New in a ‘big town’, the ‘country girl’ felt out of her element and not used to big-city life. Thanks to her lecturers, the journey to a legal qualification at the University of the Free State (UFS) ended with an average final-year mark of 80% for the Law graduate.

Back in Jansenville, Lizandré’s neighbour nicknamed her ‘klein prokureurtjie (little lawyer)’ as she was growing up, because she had a ‘habit of arguing’, which motivated her to choose law as a career. She says, “arguing with facts earlier, has turned into a passion”. “The competitive side of me always wants to win; I guess that makes me the perfect candidate for a future advocate,” she says.

Managing undergraduate studies, Lizandré – who is also an accomplished athlete – says all she did was study and train. “The only thing I struggled with was my sleeping schedule, as I was constantly tired from hard training, and I studied till the morning hours while I had to wake up again early for morning training.”

The track, field, and cross-country runner has received numerous national medals for the sport and will unfortunately miss the invitation to the annual Excellence Awards in the Faculty of Law, as she will be competing in this year’s South African Athletics Championships in Cape Town on 22 April 2022.

Graduating with the LLB degree, Lizandré plans to finish her master’s degree with a possible topic on the legality of human gene editing in South Africa for the purposes of disease treatment or the prevention thereof.

Lizandré does not believe in having a role model, but to “always try to better myself in every aspect of life. I always believed that true inspiration and motivation come from within”.

After completing her master’s degree, Lizandré will decide on her future career path. She says: “I am still deciding whether I want to remain in Bloemfontein or relocate to Potchefstroom, as the latter has a law firm specialising in medical negligence, a field I would like to specialise in. Besides this, the two cities also boast the best athletics coaches in DB Prinsloo, Head of KovsieSport, and Jean Verster in Potchefstroom has mentored South African award-winning runner, Caster Semenya.

“Somewhere in the future, I definitely also plan on doing my doctoral degree in Law,” says Lizandré.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept