Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2022 | Story Lunga Luthuli | Photo Supplied
Lizandré Mulder
Lizandré Mulder, University of the Free State LLB graduate, does not believe in having a role model, but in striving to be a better version of herself.

Moving from Jansenville – a town outside Uitenhage – to Bloemfontein for her LLB studies, things got off to a shaky start for Lizandré Mulder. New in a ‘big town’, the ‘country girl’ felt out of her element and not used to big-city life. Thanks to her lecturers, the journey to a legal qualification at the University of the Free State (UFS) ended with an average final-year mark of 80% for the Law graduate.

Back in Jansenville, Lizandré’s neighbour nicknamed her ‘klein prokureurtjie (little lawyer)’ as she was growing up, because she had a ‘habit of arguing’, which motivated her to choose law as a career. She says, “arguing with facts earlier, has turned into a passion”. “The competitive side of me always wants to win; I guess that makes me the perfect candidate for a future advocate,” she says.

Managing undergraduate studies, Lizandré – who is also an accomplished athlete – says all she did was study and train. “The only thing I struggled with was my sleeping schedule, as I was constantly tired from hard training, and I studied till the morning hours while I had to wake up again early for morning training.”

The track, field, and cross-country runner has received numerous national medals for the sport and will unfortunately miss the invitation to the annual Excellence Awards in the Faculty of Law, as she will be competing in this year’s South African Athletics Championships in Cape Town on 22 April 2022.

Graduating with the LLB degree, Lizandré plans to finish her master’s degree with a possible topic on the legality of human gene editing in South Africa for the purposes of disease treatment or the prevention thereof.

Lizandré does not believe in having a role model, but to “always try to better myself in every aspect of life. I always believed that true inspiration and motivation come from within”.

After completing her master’s degree, Lizandré will decide on her future career path. She says: “I am still deciding whether I want to remain in Bloemfontein or relocate to Potchefstroom, as the latter has a law firm specialising in medical negligence, a field I would like to specialise in. Besides this, the two cities also boast the best athletics coaches in DB Prinsloo, Head of KovsieSport, and Jean Verster in Potchefstroom has mentored South African award-winning runner, Caster Semenya.

“Somewhere in the future, I definitely also plan on doing my doctoral degree in Law,” says Lizandré.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept