Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 August 2022 | Story André Damons | Photo André Damons
UFS Nuclear Medicine
The team of doctors in the Department of Nuclear Medicine behind the success story are, from the left (standing): Dr Osayande Evbuomwan, nuclear medicine specialist and Senior Lecturer; Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS; and Dr Walter Endres, nuclear medicine registrar. In front is Dr Tebatso Tebeila, nuclear medicine registrar.

The University of the Free State (UFS) Department of Nuclear Medicine is proud to announce the successful treatment outcome of a patient with metastatic castrate-resistant prostate cancer (MCRPC) – an advanced stage of prostate cancer – by using Lutetium 177 PSMA (Lu-177 PSMA) therapy. This was initially a case of advanced stage prostate cancer, which had failed first-line chemotherapy, leaving little or no other treatment options.

This is a proud and happy moment for the department and the UFS, which started this treatment just over a year ago. The university and the Free State province are now joining other South African medical universities, such as the University of Pretoria, and other provinces in using this method to treat MCRPC patients. Lutetium 177 PSMA (Lu-177 PSMA) therapy is used on MCRPC patients who are not eligible for chemotherapy or have failed first- or second-line chemotherapy.

Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, says the department is proud to be able to offer this treatment option to some of these patients. “It is a big win for the Free State and our oncology patients to be able to offer these expert services.” The UFS and Universitas Academic Hospital have now been able to join up with other academic institutions and hospitals in other provinces to offer these services. So far, three patients have been offered this therapeutic option, with the third patient currently undergoing his treatment.

Funds and equipment for proper treatment selection are needed

The expertise is no longer an issue for the UFS, as Dr Osayande Evbuomwan, nuclear medicine specialist and consultant, was trained and exposed to this therapy at the University of the Witwatersrand during his training as a nuclear medicine resident. Current registrars in the Department of Nuclear Medicine at the UFS are also being trained in the application of this treatment modality. However, proper patient selection is key in the management of these cases with Lu 177 PSMA. Without a PET/CT camera, it is challenging to appropriately select the patients who are most likely to respond to this therapy. This is an example of how PET/CT is crucial in the management and monitoring of oncology patients.

Both Drs Engelbrecht and Evbuomwan hope that the training of more registrars will increase their department’s capacity to treat more patients. They also hope that funds will be made available to acquire a much-needed PET/CT camera, which will greatly assist them in identifying the correct patients in need of this treatment. 

With the permission of the patient, the images above show the dramatic treatment response following Lu-177 PSMA therapy. The images on the left show widespread bone disease from the prostate cancer, including the skull. The images on the right show the dramatic response after completing four cycles of Lu 177 PSMA, with the normal excretion of the radiotracer seen in the liver, kidneys, and bladder.


Treatment puts the department, UFS, and hospital on the map

According to Dr Evbuomwan, the ability to administer this treatment puts the department, the UFS, and the hospital on the map, alongside other top universities within and outside the country. Says he: “It also creates an avenue for us to gather data for training, research purposes, and publications. We are now able to offer a promising, safe, and highly efficacious therapy for patients with MCRPC in the Free State. Some of these patients will no longer have to travel to other provinces to receive this treatment.”


“We are also well aware that not every patient will respond this way; however, proper patient selection is key in identifying responders – an area that is still being researched. We also do not know how long these patients will have their disease under control after the treatment. Nuclear medicine’s greatest cancer therapy success story is the treatment of well-differentiated thyroid cancer with radioactive iodine.” 

“After treatment, most of these patients remain cancer-free for a very long period of time, if not for life. With continuing research in the field of MCRPC radioligand therapy, we aim to improve the treatment modality, hopefully getting it to the success level of thyroid cancer therapy.”

 

News Archive

From wheat protein to perfect pizza
2017-09-26

Description: Phd Read more Tags: Barend Wentzel, Department of Plant Sciences, plant breeding, proteins, Agricultural Research Council 

Barend Wentzel received his PhD at the Department
of Plant Sciences during the university’s
winter graduation ceremony.
He is pictured here with Prof Maryke Labuschagne,
professor in Plant Breeding at the UFS.
Photo: Charl Devenish

Barend Wentzel, an alumnus of the University of the Free State’s Department of Plant Sciences, is passionate about plant breeding. 

He literally eats and lives wheat proteins. In 1989 he initiated a breeding programme on arum lilies. “This breeding programme is at an advanced stage,” he said. Besides reading, playing the piano and accordion, Barend, due to the nature of his research at the Agricultural Research Council, also experiments with different types of ciabatta recipes made from sour dough. “I usually make my own pizza on Saturday evenings,” he said.

He is working at the Agricultural Research Council – Small Grain (ARC-SG) at the Wheat Quality Laboratory where he established a Cereal Chemistry Laboratory.

Complexity of flour quality

He explains that the focus of his research is on wheat protein composition. “The research conducted for my PhD study explains the complexity of flour quality to a certain extent, and it further emphasises the influence of the environment and genetic composition on selected baking characteristics. 

“Wheat protein can be divided into different types of protein fractions. These protein fractions contribute differently to dough properties and baking quality and the expression is affected by different components in the environment, including locality, rainfall and temperature. 

“Protein content alone does, however, not explain the variation in baking quality parameters, such as mixing time, dough strength and extensibility, and loaf volume.

“Several methods can be applied to quantify the different protein fractions. I am using high-performance liquid-chromatography (HPLC). The procedure entails the separation of a wheat protein extract through a column with chromatographic packing material. The injected sample is pumped through the column (known as the stationary phase) with a solvent (known as the mobile phase). The specific procedure, size-exclusion high-performance liquid-chromatography (SE-HPLC), is also used by the university’s Department of Plant Breeding, as well as in several international Cereal Chemistry Laboratories,” said Barend.

Dough strength and to loaf volume
“One of the highlights from the study was the positive contribution of the albumin and globulin protein fractions to dough strength and to loaf volume. The findings were wheat cultivar specific and the growing environment influenced the expression. The contribution of these protein fractions was much larger than previously reported for South African wheat cultivars,” said Barend. 
“Previous reports indicated that these protein fractions had a non-specific contribution to the gluten network during dough formation. The findings from this PhD justify further research on albumins and globulin proteins.” 

The Cereal Chemistry Laboratory at ARC-SG is involved in postgraduate student training under Barend’s guidance. He serves as co-promoter for several MSc and PhD students. He is also a collaborator on an international project with the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico. Barend is furthermore working on improving wheat quality for processing and health purposes as a member of the expert working group of the International Wheat Initiative. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept