Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 August 2022 | Story André Damons | Photo André Damons
UFS Nuclear Medicine
The team of doctors in the Department of Nuclear Medicine behind the success story are, from the left (standing): Dr Osayande Evbuomwan, nuclear medicine specialist and Senior Lecturer; Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS; and Dr Walter Endres, nuclear medicine registrar. In front is Dr Tebatso Tebeila, nuclear medicine registrar.

The University of the Free State (UFS) Department of Nuclear Medicine is proud to announce the successful treatment outcome of a patient with metastatic castrate-resistant prostate cancer (MCRPC) – an advanced stage of prostate cancer – by using Lutetium 177 PSMA (Lu-177 PSMA) therapy. This was initially a case of advanced stage prostate cancer, which had failed first-line chemotherapy, leaving little or no other treatment options.

This is a proud and happy moment for the department and the UFS, which started this treatment just over a year ago. The university and the Free State province are now joining other South African medical universities, such as the University of Pretoria, and other provinces in using this method to treat MCRPC patients. Lutetium 177 PSMA (Lu-177 PSMA) therapy is used on MCRPC patients who are not eligible for chemotherapy or have failed first- or second-line chemotherapy.

Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, says the department is proud to be able to offer this treatment option to some of these patients. “It is a big win for the Free State and our oncology patients to be able to offer these expert services.” The UFS and Universitas Academic Hospital have now been able to join up with other academic institutions and hospitals in other provinces to offer these services. So far, three patients have been offered this therapeutic option, with the third patient currently undergoing his treatment.

Funds and equipment for proper treatment selection are needed

The expertise is no longer an issue for the UFS, as Dr Osayande Evbuomwan, nuclear medicine specialist and consultant, was trained and exposed to this therapy at the University of the Witwatersrand during his training as a nuclear medicine resident. Current registrars in the Department of Nuclear Medicine at the UFS are also being trained in the application of this treatment modality. However, proper patient selection is key in the management of these cases with Lu 177 PSMA. Without a PET/CT camera, it is challenging to appropriately select the patients who are most likely to respond to this therapy. This is an example of how PET/CT is crucial in the management and monitoring of oncology patients.

Both Drs Engelbrecht and Evbuomwan hope that the training of more registrars will increase their department’s capacity to treat more patients. They also hope that funds will be made available to acquire a much-needed PET/CT camera, which will greatly assist them in identifying the correct patients in need of this treatment. 

With the permission of the patient, the images above show the dramatic treatment response following Lu-177 PSMA therapy. The images on the left show widespread bone disease from the prostate cancer, including the skull. The images on the right show the dramatic response after completing four cycles of Lu 177 PSMA, with the normal excretion of the radiotracer seen in the liver, kidneys, and bladder.


Treatment puts the department, UFS, and hospital on the map

According to Dr Evbuomwan, the ability to administer this treatment puts the department, the UFS, and the hospital on the map, alongside other top universities within and outside the country. Says he: “It also creates an avenue for us to gather data for training, research purposes, and publications. We are now able to offer a promising, safe, and highly efficacious therapy for patients with MCRPC in the Free State. Some of these patients will no longer have to travel to other provinces to receive this treatment.”


“We are also well aware that not every patient will respond this way; however, proper patient selection is key in identifying responders – an area that is still being researched. We also do not know how long these patients will have their disease under control after the treatment. Nuclear medicine’s greatest cancer therapy success story is the treatment of well-differentiated thyroid cancer with radioactive iodine.” 

“After treatment, most of these patients remain cancer-free for a very long period of time, if not for life. With continuing research in the field of MCRPC radioligand therapy, we aim to improve the treatment modality, hopefully getting it to the success level of thyroid cancer therapy.”

 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept