Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 August 2022 | Story André Damons | Photo André Damons
UFS Nuclear Medicine
The team of doctors in the Department of Nuclear Medicine behind the success story are, from the left (standing): Dr Osayande Evbuomwan, nuclear medicine specialist and Senior Lecturer; Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS; and Dr Walter Endres, nuclear medicine registrar. In front is Dr Tebatso Tebeila, nuclear medicine registrar.

The University of the Free State (UFS) Department of Nuclear Medicine is proud to announce the successful treatment outcome of a patient with metastatic castrate-resistant prostate cancer (MCRPC) – an advanced stage of prostate cancer – by using Lutetium 177 PSMA (Lu-177 PSMA) therapy. This was initially a case of advanced stage prostate cancer, which had failed first-line chemotherapy, leaving little or no other treatment options.

This is a proud and happy moment for the department and the UFS, which started this treatment just over a year ago. The university and the Free State province are now joining other South African medical universities, such as the University of Pretoria, and other provinces in using this method to treat MCRPC patients. Lutetium 177 PSMA (Lu-177 PSMA) therapy is used on MCRPC patients who are not eligible for chemotherapy or have failed first- or second-line chemotherapy.

Dr Gerrit Engelbrecht, Clinical Head of the Department of Nuclear Medicine at the UFS, says the department is proud to be able to offer this treatment option to some of these patients. “It is a big win for the Free State and our oncology patients to be able to offer these expert services.” The UFS and Universitas Academic Hospital have now been able to join up with other academic institutions and hospitals in other provinces to offer these services. So far, three patients have been offered this therapeutic option, with the third patient currently undergoing his treatment.

Funds and equipment for proper treatment selection are needed

The expertise is no longer an issue for the UFS, as Dr Osayande Evbuomwan, nuclear medicine specialist and consultant, was trained and exposed to this therapy at the University of the Witwatersrand during his training as a nuclear medicine resident. Current registrars in the Department of Nuclear Medicine at the UFS are also being trained in the application of this treatment modality. However, proper patient selection is key in the management of these cases with Lu 177 PSMA. Without a PET/CT camera, it is challenging to appropriately select the patients who are most likely to respond to this therapy. This is an example of how PET/CT is crucial in the management and monitoring of oncology patients.

Both Drs Engelbrecht and Evbuomwan hope that the training of more registrars will increase their department’s capacity to treat more patients. They also hope that funds will be made available to acquire a much-needed PET/CT camera, which will greatly assist them in identifying the correct patients in need of this treatment. 

With the permission of the patient, the images above show the dramatic treatment response following Lu-177 PSMA therapy. The images on the left show widespread bone disease from the prostate cancer, including the skull. The images on the right show the dramatic response after completing four cycles of Lu 177 PSMA, with the normal excretion of the radiotracer seen in the liver, kidneys, and bladder.


Treatment puts the department, UFS, and hospital on the map

According to Dr Evbuomwan, the ability to administer this treatment puts the department, the UFS, and the hospital on the map, alongside other top universities within and outside the country. Says he: “It also creates an avenue for us to gather data for training, research purposes, and publications. We are now able to offer a promising, safe, and highly efficacious therapy for patients with MCRPC in the Free State. Some of these patients will no longer have to travel to other provinces to receive this treatment.”


“We are also well aware that not every patient will respond this way; however, proper patient selection is key in identifying responders – an area that is still being researched. We also do not know how long these patients will have their disease under control after the treatment. Nuclear medicine’s greatest cancer therapy success story is the treatment of well-differentiated thyroid cancer with radioactive iodine.” 

“After treatment, most of these patients remain cancer-free for a very long period of time, if not for life. With continuing research in the field of MCRPC radioligand therapy, we aim to improve the treatment modality, hopefully getting it to the success level of thyroid cancer therapy.”

 

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept