Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 February 2022 | Story NONSINDISO QWABE | Photo UFS Photo Archive
Prof Rodwell Makombe, Associate Professor in the Department of English on the Qwaqwa Campus.

Prof Rodwell Makombe, Associate Professor in the Department of English on the university’s Qwaqwa Campus, will be joining a prestigious group of more than 100 academic staff from African universities for this year’s University of Michigan African Presidential Scholars (UMAPS) programme.

Each year, the programme hosts more than 180 academics from different universities in Africa for a five-month fellowship, providing academics with access to the university’s research libraries and facilities, on-campus housing, health insurance, and a stipend to cover living expenses.

Fellowship an opportunity for collaboration and career growth 
 
The fellowship comes at just the right time for Prof Makombe, who said he is looking forward to mentorship for his growth and career development in a new environment and atmosphere. “I am very excited about this opportunity, which I think has come at the right time. It will expose me to a broad network of scholars, which I need for collaboration purposes, and it will also give me an opportunity to share my research and learn from the experiences of other scholars from different parts of the world. Given that I will be working closely with a faculty member of the university for the duration of the fellowship, the programme will also provide me with the mentorship that I need for my growth and career development.”
 
Apart from the exposure to broad academic and research scholars, he said he was looking forward to having the time and resources to finish writing his second book.

“I have just published my first book in October 2021, and I have already started doing research for my second book. The fellowship will give me time and space to focus on writing the book without the usual interruptions associated with my teaching responsibilities. The book focuses on cultures of resistance in post-Mugabe Zimbabwe. It is a sequel to my recent book,Cultural texts of resistance in Zimbabwe: Music, Memes, Media, which explores discursive resistance in Zimbabwe in the context of crisis.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept