Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Giraffe research broadcast on National Geographic channel
2016-03-09

Description: Giraffe research  Tags: Giraffe research

A documentary focusing on the latest and most interesting research about giraffes was recently broadcasted on National Geographic. Dr Francois Deacon from the UFS Department of Animal, Wildlife and Grassland Sciences and the team of researchers working with him, were first in the world to equip giraffes with GPS collars, and to conduct research on them.

Research by Dr Francois Deacon, from the UFS Department of Animal, Wildlife and Grassland Sciences, involving the equipping of giraffes with GPS collars, was broadcast this week as part of a documentary (4 March 2016 and subsequent weeks) on National Geographic (Channel 182). The documentary is the first of two on his team's research.

Dr Deacon and the team of researchers working with him were the first in the world to equip giraffes with GPS collars, and to conduct research on this initiative. The group of researchers can now follow the animals night and day by means of the GPS collars, while monitoring their movements from a distance on a computer screen and seeing the world from a giraffe's perspective.

“The documentary focuses on the latest and interesting information about our research in different countries,” Dr Deacon said. Besides their local research on giraffes, he and his team also assist in other projects and research in Namibia, Botswana, Zambia, Kenya, the Democratic Republic of the Congo, and Uganda.

“There is much to learn from the documentary,” Dr Deacon said. Interesting facts from their research include herd interactions by individuals towards each other, bulls versus bulls, and cows versus calves. In the documentary, the viewer can also learn how giraffes use thermoregulation, their tongues, and roaming areas and distances; peculiar behaviour such as feeding on bones and soil; bulls fighting; how and when giraffes drink water; and the conservation and management of giraffes.
 
Focus is also placed on the manner in which the latest research plays a role in the better understanding of the animals.
 
According to Dr Deacon, this is the first documentary to focus on giraffe research on such a large scale. Marco Polo Films from Terra Mater are contracted by National Geographic to produce nature films – this was the hundredth nature film produced by them.
 
“There has never before been such a production about giraffes. It also attracted huge interest and reaction overseas, which will provide great exposure for our research and for the UFS.
 
“We believe that the media involvement will provide much more exposure to giraffes, which is a good thing, since they are facing extinction in Africa. The exposure can, in itself, lead to new research and has already started attracting international students to the UFS,” Dr Deacon said.
 
The second documentary will follow later this year. Iniosante, a film team from Texas, USA, is producing this film, which focuses on the extinction of giraffes. It is the same team responsible for the production Last of the Longnecks.



Additional resources:


-    Last of the Longnecks (trailer)
-    Giraffe – Up high and personal (National Geographic video)
-    Giraffe: African Giant (National Geographic video)
-    Giraffe – Up high and personal (article)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept