Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 May 2022 | Story Leonie Bolleurs | Photo Supplied
Dr maria Madiope and and Dr Justina Dugbazah
Dr Marinkie Madiope, the Campus Principal of the South Campus, recently received an award from Dr Justina Dugbazah (right), the Senior Programme Education and Social Development Coordinator of the African Union Panel on Emerging Technologies.

Dr Marinkie Madiope, the Campus Principal of the University of the Free State (UFS) South Campus, recently received an award from Dr Justina Dugbazah, the Senior Programme Education and Social Development Coordinator of the African Union Panel on Emerging Technologies’ Calestus Juma Executive Dialogue (APET-CJED) programme

Dr Madiope was recognised for the work she is doing in Africa through the CJED. She collected the award during CJED’s 6th Dialogue, in the presence of more than 20 African member states. 

Fit-for-purpose policies and curricula

The focus of this event, which took place in Dakar, Senegal, was on effectively harnessing educational innovations and technologies for formal and non-formal teaching and learning in Africa.

During the dialogue, the UFS was also appreciated for its visibility and impact on the African continent and was recognised as a prospective partner and collaborator on different science, technology, engineering, and mathematics (STEM) projects, which will be discussed and confirmed later in May 2022.

Dr Madiope, the Vice-President of the Technical Working Group (TWG) of the CJED, also gave a presentation at the dialogue, speaking about the education policy implementation curriculum review in Africa. Speaking from a South African context, she highlighted the different education policies and shared her views on how the relevant role players on the continent can collaborate to ensure that policies and curricula are designed and developed fit for purpose. 

Some of the recommendations were to contextualise education, science, technology and innovation policies, and teaching methods to the African context, and have science subjects translated into local languages for easy understanding and interpretation. It was also recommended to incentivise STEM education as to encourage girl participation in STEM projects. 

In the discussion following the dialogue presentation, member states also recommended that the funding set aside for education be increased to 25% of countries’ national budget.

Supporting the development of scarce skills

With AUDA-NEPAD’s support for skills development programmes that promotes the occupational prospects of young Africans, Dr Madiope’s presentation, which highlighted some of the scarce skills on the continent, was welcomed. According to her, the Media, Information and Communication Technologies Sector Education and Training Authority (MICTSETA) has identified a number of scarce skills on the continent. These skills, aligning with the Fourth Industrial Revolution, include artificial intelligence, cybersecurity, cloud computing, data science, software development, internet of things, robotic processing automation, design thinking, and quality engineering. The university are planning to get involved in developing the skills of the youth on the African continent in terms of three-dimensional printing, drone manufacturing, and drone awareness.

• CJED is supported by APET, the African Union Development Agency, and the New Partnership for Africa’s Development (AUDA-NEPAD) strategic initiative. APET advises the African Union and member states on harnessing emerging technologies for economic development, and AUDA-NEPAD provides a platform to promote inter-country and inter-regional learning and knowledge exchange on science, innovation, and emerging technologies across Africa.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept