Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 November 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Liezel Rudolph
Dr Liezel Rudolph, a lecturer in the Department of Geography, recently returned from an expedition to Gough Island in the South Atlantic Ocean, where she was involved in research that aims to better understand the landscape evolution of some subantarctic islands and their response to long-term climate change.

A study of subantarctic islands tells us that, in general, the Southern Hemisphere is experiencing a rise in temperature, with an increase in rainfall in some locations, and other areas becoming drier. The annual temperature and rainfall average remain the same in some places, but there is a change in seasonality and synoptic weather events.

This is according to Dr Liezel Rudolph, a lecturer in the Department of Geography at the University of the Free State (UFS). She recently returned from an expedition to Gough Island in the South Atlantic Ocean, supported by the South African National Department of Forestry, Fisheries and the Environment, the National Research Foundation, and the Royal Society for the Protection of Birds.

This teacher of modules on Process Geomorphology and fieldwork techniques at the UFS, says the objective of her work on the island was to do a geomorphological survey of the island and explore the suitability of geochronological dating techniques on the island’s substrate. 

She explains that with geochronological methods one can determine the age of rock material as well as the rate of landscape change on the island. “In other words, dating when the volcano was formed and determining how long it takes for weathering to break down the rock material, and erosional processes to remove soil material.”
 
The research she is involved in, forms part of a SANAP-NRF-funded project, Sub-Antarctic Landscape Climate Interactions, which aims to better understand the landscape evolution of some subantarctic Islands and their response to long-term climate change. 

Studying the past to understand the present

According to her, studying landscape change enables one to better understand climate change over a long period of time. 

She states that the more regions are investigated, the clearer the picture of climate change will become. “The Earth is a large, complex system. By studying climate change in one location, one cannot simply assume that the same type and rate of change is occurring everywhere else. It would be like imaging a 1 000-piece puzzle by building with 10 pieces. The Southern Hemisphere is predominantly ocean, which makes it difficult to pin down land-atmosphere interactions – but the subantarctic islands give us the opportunity to create data points for the Southern Hemisphere, which would otherwise be a very large missing piece of the puzzle,” explains Dr Rudolph.

She says the interaction between ocean, atmosphere, and land remains complex and it is important to study the entire picture in order to fully understand how this is happening. Especially since the climate is changing at a drastic rate.

Dr Rudolph, whose research at the UFS is focused on constraining the last glaciation of subantarctic Marion Island though various proxies and dating techniques, says the subantarctic islands are very sensitive to changes in climate. 

A clearer picture of climate change

She was part of previous expeditions to the island. Although all these expeditions had different goals, according to her, they all aimed to answer the same questions, which are how the island’s landscape has developed throughout history and what the climatic drivers were during its evolution. 

“The landscape responds to changes in temperature and precipitation. Under colder, wetter conditions – when the island’s surface is subject to a freeze-thaw process – a range of peri-glacial landforms will develop. These landforms will still be evident in the landscape years later under a different climate, for example, warmer or drier conditions. We can study these landforms in real-time and establish whether they are actively forming or are relict features that formed under different climatic environments,” remarks Dr Rudolph.

The research, which is taking place in collaboration with the British Antarctic Survey, is co-led by Prof Werner Nel from the University of Fort Hare, and Prof David Hedding from the University of South Africa. 

• Dr Rudolph is grateful to the Government of Tristan da Cunha, which is responsible for managing the conservation of Gough Island, for permitting them to do scientific work on the island. 

News Archive

Breeding of unique game requires a balance between conservation and sustainable use
2014-05-20

 

Game bred for qualities such as unconventional hair colour or horn quality, may on the long term have unexpected consequences for biodiversity and game farming.

This is according to the inaugural lecture of Prof Paul Grobler from the Department of Genetics at the University of the Free State (UFS).

Prof Grobler feels that the consequences of selective breeding should be examined carefully, as there is currently much speculation on the subject without sound scientific information to back it.

“At the moment, colour variation invokes much interest among game farmers and breeders. Unusual colour variants are already available in different game species. These unusual animals usually fetch much higher prices at auctions compared to prices for the ‘normal’ individuals of the species.”

Examples of these unusual variants are springbuck being bred in white, black or copper colours, the black-backed or ‘saddleback’ impala, and the gold-coloured and royal wildebeest.

A black-backed impala was recently sold for R5,7 million.

“Based on genetic theory, good reason exists why these practices need to be monitored, but one should also take care not to make the assumption that selective breeding will inevitably lead to problems,” warns Prof Grobler.

Grobler says that negative characteristics in a species can sometimes unwittingly be expressed during the selection process for a unique colour. “It is seen, for example, in purebred dogs where the breeding of a new race sometimes brings underlying genetic deviations in the species to the front.” He also believes that some of these animals may not be able to adapt to changing environmental conditions.

“However, one should also look at the positive side: because of the good demand for game, including unusual variants, there is much more game in South Africa today than in many decades. Balance should be found between the aims of conservation and the sustainable utilisation of game.”

Research at the UFS’s Department of Genetics is now trying to establish the genetic effects of intensive game breeding and predict the impact on biodiversity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept