Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 October 2022 | Story Andrè Damons | Photo Monsoon Photography
Prof Paul Oberholster
Prof Paul Oberholster was one of 29 scholars and scientists that were inaugurated as new ASSAf members in earlier this month (19 October 2022).

Prof Paul Oberholster, Director of the Centre for Environmental Management at the University of the Free State (UFS), is the newest academic from the university to be inaugurated as a member of the Academy of Science of South Africa (ASSAf). 

Prof Oberholster was one of 29 scholars and scientists who were inaugurated as new ASSAf members earlier this month (19 October 2022). At the same time, 10 new members of the South African Young Academy of Science (SAYAS) were inaugurated.

As the official Academy of South Africa, ASSAf honours the country’s most outstanding scholars by electing them to membership of the Academy. ASSAf members are drawn from the full spectrum of disciplines. New members are elected each year by the full membership of the Academy in recognition of scholarly achievement. Members are the core asset of the Academy and give of their time and expertise voluntarily in the service of society. The 29 new ASSAf Members bring the total membership of ASSAf to 659.

Science must be in the service

“I feel very honoured to have been selected as a member of the official national academy of science which represents South Africa in the international community of science academies. I am a strong believer that science must be in the service of society. In all my research, I have shown an interest and determination to bring practitioners, students, and scholars together to pursue and foster the betterment of the human condition through its intimate relation to the natural world. The latter is in strong relationship with the vision and mission of the Academy,” says Prof Oberholster about being included in the academy of science.

This honour comes almost a year after Prof Oberholster won the NSTF-Water Research Commission (WRC) Award for his contribution to water resource management in SA over the past five years, with special reference to the field of biological passive wastewater treatment.

According to him, the ASSAf membership means providing evidence-based scientific advice on water resource issues of public interest to government and other stakeholders. He was nominated by Prof Eugene Cloete, the previous Vice-Rector Research and Innovation at Stellenbosch University for his research focus related to water resource management.

Research has direct impact on the most important resources

Prof Corli Witthuhn, Vice Rector: Research and Internationalisation, says the UFS staff and students are proud of the national recognition that Prof Oberholster received for his lifetime achievements in research on water resource management. His research has direct impact on the managing, protection and rehabilitation of one of the country’s most important resources.  

“The demands on our water supplies will increase in the future as a result of climate change globally. We believe his research will become even more important and relevant in the next decade. We are looking forward to his future achievements and will work with him to provide him with the appropriate UFS support.  Congratulations,” says Prof Witthuhn.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept