Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story The Conversation | Photo supplied
Claudia Ntsapi
Dr Claudia Ntsapi, Basic Medical Sciences Lecturer at the University of the Free State.

Opinion article by , Basic Medical Sciences Lecturer


As the world population has grown older, Alzheimer’s disease has become increasingly common. Alzheimer’s disease is the most prevalent form of dementia. Dementia is a term used to describe a range of symptoms linked to the decline in brain function with age. Symptoms include memory loss, communication difficulties, problem-solving struggles, and personality or behavioural changes.

Alzheimer’s disease is an increasingly urgent global issue. The World Health Organization predicts that the number of people with the condition will triple by 2050.

Despite this growing problem, Alzheimer’s disease remains a relatively understudied condition. This is particularly the case in sub-Saharan countries such as South Africa. One major challenge is that Alzheimer’s is a complex condition with no known cure. However, researchers have identified several key risk factors associated with the disease. These include age, genetics, lifestyle factors and underlying medical conditions.

In recent years, one of the most promising areas of research on age-related diseases, such as Alzheimer’s disease, has been the accumulation of harmful proteins in the brain. Specifically amyloid-ß. Amyloid-ß has remained a prominent area of research in Alzheimer’s disease as its build-up is a classic feature in the development of the condition. Understanding its involvement in the disease process is crucial for advancing our knowledge and developing effective strategies to diagnose, prevent and treat the disease.

The accumulation of amyloid-ß can lead to the formation of plaques. These plaques can interfere with communication between brain cells. This ultimately contributes to cognitive decline and other symptoms associated with Alzheimer’s disease.

Amyloid-ß is a large membrane protein that is essential in neural growth and repair. But its corrupted form in later life can destroy nerve cells. This triggers the loss of thought and memory that is associated with Alzheimer’s.

We therefore sought to find out if dietary interventions, particularly intermittent fasting, would counteract the accumulation of amyloid-ß in the brain and potentially safeguard against age-related brain cell death.

In a paper published in 2021, my colleague and I showed that in experiments conducted in mice we found that intermittent fasting counteracted amyloid-ß accumulation in the brain. These findings were further confirmed in a paper published in May of 2022.

Our findings are an important contribution to the search for the potential role of dietary interventions and are consistent with previous studies supporting the idea that intermittent fasting may help counteract amyloid-ß accumulation in the brain and protect against age-related brain cell death. To my knowledge, the most recent study using a variation of intermittent fasting, was published in September 2022. The clinical branch of this study remains ongoing.

Research into the causes of Alzheimer’s has gathered pace in recent years with new ground being broken on a regular basis as scientists search for treatments.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy – the process that breaks down and recycles damaged or unnecessary cellular components, such as organelles and toxic proteins. This process can therefore reduce the risk of amyloid-ß build-up and associated brain cell death.

These findings are particularly significant because they shed light on the relationship between autophagy and the death of brain cells with age, and the potential therapeutic benefits of interventions that target this process.

How it works

Intermittent fasting is a dietary approach that involves regulating food intake by alternating periods of fasting and eating. This dietary regimen comprises periods of restricted food consumption, followed by periods of normal eating.

There are different types of intermittent fasting. One is time-restricted eating, where food is consumed within a specific time window each day. Alternate-day fasting is where food is restricted every other day.

Intermittent fasting has been shown to have various health benefits. Some of the benefits relate to the promotion of brain health.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy, an essential process for removing toxic or misfolded proteins that can build up in cells.

Sometimes autophagy doesn’t work properly to remove harmful proteins or other cellular components from cells. This has been strongly implicated in the development and progression of various age-related diseases, and is a target of research for potential therapies.

What we did

In our study we investigated the effects of intermittent fasting on brain cells in mice, and brain cells isolated from mice with increased amyloid-ß toxicity. Mice cells are frequently used as a model for human cells in scientific research. This is because of the significant genetic similarity between mice and humans. This use of animal models allows researchers to gain valuable insights and test hypotheses. It is generally considered ethically preferable before potentially conducting human studies.

We found that 24 to 48 hours of intermittent fasting by mice provided protection against cell death in specific regions of their brain. We noted increased autophagy levels in cells of fasted mice. Even in the presence of a high amyloid-ß protein load in brain cells, intermittent fasting maintained autophagy activity. And the process remained effective over a 21-day treatment intervention period.

By increasing the efficiency of autophagy, it is possible to maintain the removal of harmful proteins in cells, even as we age.

The findings of this study suggest that interventions such as intermittent fasting could potentially protect against the development of age-related diseases. This has important implications for public health.

Intermittent fasting is a relatively simple dietary intervention: it’s easy to do. It has the potential to be widely adopted as a preventive measure against the onset of age-related diseases. These findings also provide a basis for future research into the mechanisms by which intermittent fasting protects against brain cell death, exploring the potential for additional therapeutic interventions that target autophagy, and examining the effects of different fasting regimens on brain health.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

News Archive

Researcher in mathematics ranks among world’s top peer reviewers
2016-10-07

Description: Abdon Peer Review Tags: Abdon Peer Review

Prof Abdon Atangana, from the UFS Institute
for Groundwater Studies.
Photo: Johan Roux

Thirty-year-old Prof Abdon Atangana has received the prestigious Sentinels of Science Award 2016. This award honours the highest achievers in peer review across the world’s journals. The elite contributors to scholarly peer review and editorial pursuits internationally are also honoured with this award. Recipients have demonstrated an outstanding, expert commitment to protecting the integrity and accuracy of published research in their field.

Prof Atangana, who ranks number one in the mathematics discipline with a merit of 324, is a professor at the Institute for Groundwater Studies at the University of the Free State (UFS).

He is editor of 17 international journals, editor-in-chief of two international journals and also reviewer of more than 200 international accredited journals. He has been lead and guest editor of some special issues. He is also editor of 19 journals of applied mathematics and mathematics and has presented and participated in more than 20 international conferences.

Prof Atangana’s research interests are methods and applications of partial and ordinary differential equations, fractional differential equations, perturbations methods, asymptotic methods, iterative methods, and groundwater modelling.

“Editors in more than 100 journals
trust my opinion to assess
whether a submitted paper
can be published or not.”

Peer review requires a respected expert in a given field

According to the professor, reviewers play a central role in scholarly publishing. “In the academic field, peer review is the process of subjecting an author’s scholarly work, research, or ideas to the scrutiny of others who are experts in the same field, before a paper describing this work is published in a journal or as a book. The peer review process helps the publisher to decide whether the work should be accepted, considered acceptable with revisions, or rejected.

“Peer review requires a respected expert in a given field, who is qualified and able to perform the review in a given timeframe. Due to the impact of my research papers in the field of mathematics and applied mathematics, and also my international recognition in the field of applied mathematics, many editors in more than 100 journals of applied mathematics trust my opinion to assess whether a submitted paper in a given journal of mathematics and applied mathematics can be published or not. Only this year I was able to review more than 100 papers from different journals of applied mathematics, applied physics, mathematics, engineering and hydrology,” he said.

A successful peer reviewer displays passion for the development of science

Key to his success as peer reviewer is his passion for the development of science, his ability to write fair reports about a given manuscript, as well as his knowledge on what has been done and what are the challenges in a given field to be able to give a report that will help the advancement of science.

Currently he is developing new mathematics tools that will be used to accurately model statistical problems as well as physical problems with many layers.

“To be the number one peer reviewer in the world in mathematics is a product of love, patience and determination to enhance science,” Prof Atangana said.

His advice to young researchers is to put their trust in God and to work hard. “Not necessarily for money but for love because the future of Africa is in the hands of young Africans,” he said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept