Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 June 2023 | Story Dr Nokuthula Tlalajoe-Mokhatla | Photo Supplied
Dr Nokuthula Tlalajoe-Mokhatla
Dr Nokuthula Tlalajoe-Mokhatla, Academic Head and Senior Lecturer at the Division of Student Learning and Development.

The University of the Free State (UFS) is celebrating Youth Month by showcasing the positive influence of the institution on career development. As part of this initiative, we are sharing the stories of UFS alumni who are now working at the university.

Dr Nokuthula Tlalajoe-Mokhatla, Academic Head and Senior Lecturer at the Division of Student Learning and Development, shares her UFS journey:

Q: Year of graduation from the UFS:

A: I graduated in 2010, 2011, 2013, and 2021 (virtual graduation).

Q: Qualification obtained from the UFS:
A: BSc Biochemistry and Microbiology, BSc Honours Biochemistry, MSc Biochemistry (Cum Laude), PhD in Health Professions Education

Q: Date of joining the UFS as a staff member:
A: I joined as an official staff member on 18 January 2016; however, I have been in the HR system since my third year (2009) when I was appointed as a Laboratory Assistant.

Q: Initial job title and current job title:

A: In the context of point 3, I would safely say I moved from Laboratory Assistant, to Demonstrator, to Lecturer, and now Academic Head of the division and Senior Lecturer.

Q: How did the UFS prepare you for the professional world?

A: Every human being can be taught a skill, be it a scientist, health professional, or accountant. However, how their soft skills complement or lack to complement the core knowledge and application will set that individual apart. That being said, I have utilised the vast opportunities that are always accessible to enhance one's development with regard to lifelong learning skills. My biggest gain was the Engaged Leadership Programme (middle management level), which I completed in 32 weeks and obtained a distinction. That type of training set me in a position that could easily have played a role in me being able to progress further in the professional world.

Q: What are your thoughts on transitioning from a UFS alumnus to a staff member?

A: The outlook is so different when you are a staff member. I am enjoying the world of being a staff member more. This is due to my struggles as a student – a story for another day. The perks and benefits are more as a staff member, and your world gets bigger and bigger. Networking with like-minded people and contributing to day-to-day activities is mind-blowing for me.

Q: Any additional comments about your experience?
A: I appreciate the support systems in our setting; it comes in handy when we doubt ourselves and think we are not enough or adequate. What I do appreciate is the opportunities that are accessible, and with the help we have in place, it brings a sense of ease to know you can equally access it.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept